{"title":"闭流形上的全局特征族","authors":"Oskar Riedler, Anna Siffert","doi":"10.1112/jlms.70228","DOIUrl":null,"url":null,"abstract":"<p>We study globally defined <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>,</mo>\n <mi>μ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\lambda,\\mu)$</annotation>\n </semantics></math>-eigenfamilies on closed Riemannian manifolds. Among others, we provide (non-)existence results for such eigenfamilies, examine topological consequences of the existence of eigenfamilies and classify <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>,</mo>\n <mi>μ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\lambda,\\mu)$</annotation>\n </semantics></math>-eigenfamilies on flat tori. It is further shown that for <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>=</mo>\n <msub>\n <mi>f</mi>\n <mn>1</mn>\n </msub>\n <mo>+</mo>\n <mi>i</mi>\n <msub>\n <mi>f</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$f=f_1+i f_2$</annotation>\n </semantics></math> being an eigenfunction decomposed into its real and its imaginary part, the powers <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msubsup>\n <mi>f</mi>\n <mn>1</mn>\n <mi>a</mi>\n </msubsup>\n <msubsup>\n <mi>f</mi>\n <mn>2</mn>\n <mi>b</mi>\n </msubsup>\n <mo>∣</mo>\n <mi>a</mi>\n <mo>,</mo>\n <mi>b</mi>\n <mo>∈</mo>\n <mi>N</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace f_1^a f_2^b\\mid a,b\\in \\mathbb N\\rbrace$</annotation>\n </semantics></math> satisfy highly rigid orthogonality relations in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2(M)$</annotation>\n </semantics></math>. In establishing these orthogonality relations, one is led to combinatorial identities involving determinants of products of binomials, which we view as being of independent interest.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70228","citationCount":"0","resultStr":"{\"title\":\"Global eigenfamilies on closed manifolds\",\"authors\":\"Oskar Riedler, Anna Siffert\",\"doi\":\"10.1112/jlms.70228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study globally defined <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>λ</mi>\\n <mo>,</mo>\\n <mi>μ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\lambda,\\\\mu)$</annotation>\\n </semantics></math>-eigenfamilies on closed Riemannian manifolds. Among others, we provide (non-)existence results for such eigenfamilies, examine topological consequences of the existence of eigenfamilies and classify <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>λ</mi>\\n <mo>,</mo>\\n <mi>μ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\lambda,\\\\mu)$</annotation>\\n </semantics></math>-eigenfamilies on flat tori. It is further shown that for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>f</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>+</mo>\\n <mi>i</mi>\\n <msub>\\n <mi>f</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$f=f_1+i f_2$</annotation>\\n </semantics></math> being an eigenfunction decomposed into its real and its imaginary part, the powers <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <msubsup>\\n <mi>f</mi>\\n <mn>1</mn>\\n <mi>a</mi>\\n </msubsup>\\n <msubsup>\\n <mi>f</mi>\\n <mn>2</mn>\\n <mi>b</mi>\\n </msubsup>\\n <mo>∣</mo>\\n <mi>a</mi>\\n <mo>,</mo>\\n <mi>b</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace f_1^a f_2^b\\\\mid a,b\\\\in \\\\mathbb N\\\\rbrace$</annotation>\\n </semantics></math> satisfy highly rigid orthogonality relations in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>M</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^2(M)$</annotation>\\n </semantics></math>. In establishing these orthogonality relations, one is led to combinatorial identities involving determinants of products of binomials, which we view as being of independent interest.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70228\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70228\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70228","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
研究了闭黎曼流形上全局定义的(λ, μ) $(\lambda,\mu)$ -特征族。其中,我们提供了这些特征族的(不)存在性结果,检查了特征族存在的拓扑结果,并在平坦环面上分类了(λ, μ) $(\lambda,\mu)$ -特征族。进一步证明,当f = f 1 + i f 2 $f=f_1+i f_2$是一个分解为实部和虚部的特征函数时,幂{ f 1a f 2b∣a, b∈N }$\lbrace f_1^a f_2^b\mid a,b\in \mathbb N\rbrace$在l2 (M) $L^2(M)$中满足高度刚性正交关系。在建立这些正交关系的过程中,我们得到了包含二项乘积的行列式的组合恒等式,我们认为这是一个独立的问题。
We study globally defined -eigenfamilies on closed Riemannian manifolds. Among others, we provide (non-)existence results for such eigenfamilies, examine topological consequences of the existence of eigenfamilies and classify -eigenfamilies on flat tori. It is further shown that for being an eigenfunction decomposed into its real and its imaginary part, the powers satisfy highly rigid orthogonality relations in . In establishing these orthogonality relations, one is led to combinatorial identities involving determinants of products of binomials, which we view as being of independent interest.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.