Intersection theory and Chern classes on normal varieties

IF 1.2 2区 数学 Q1 MATHEMATICS
Adrian Langer
{"title":"Intersection theory and Chern classes on normal varieties","authors":"Adrian Langer","doi":"10.1112/jlms.70244","DOIUrl":null,"url":null,"abstract":"<p>We study intersection theory and Chern classes of reflexive sheaves on normal varieties. In particular, we define generalization of Mumford's intersection theory on normal surfaces to higher dimensions. We also define and study the second Chern class for reflexive sheaves on normal varieties. We use these results to prove some Bogomolov-type inequalities on normal varieties in positive characteristic. We also prove some new boundedness results on normal varieties in positive characteristic.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70244","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study intersection theory and Chern classes of reflexive sheaves on normal varieties. In particular, we define generalization of Mumford's intersection theory on normal surfaces to higher dimensions. We also define and study the second Chern class for reflexive sheaves on normal varieties. We use these results to prove some Bogomolov-type inequalities on normal varieties in positive characteristic. We also prove some new boundedness results on normal varieties in positive characteristic.

Abstract Image

Abstract Image

Abstract Image

正态变种的交理论与陈氏类
研究了正变体上的自反束的交点理论和陈类。特别地,我们定义了Mumford交点理论在法向曲面上向高维的推广。我们还定义并研究了正变体上的自反束的第二类陈氏类。我们利用这些结果证明了正态品种正特征上的一些bogomolov型不等式。我们还证明了正态变种在正特征上的一些新的有界性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信