Global eigenfamilies on closed manifolds

IF 1.2 2区 数学 Q1 MATHEMATICS
Oskar Riedler, Anna Siffert
{"title":"Global eigenfamilies on closed manifolds","authors":"Oskar Riedler,&nbsp;Anna Siffert","doi":"10.1112/jlms.70228","DOIUrl":null,"url":null,"abstract":"<p>We study globally defined <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>,</mo>\n <mi>μ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\lambda,\\mu)$</annotation>\n </semantics></math>-eigenfamilies on closed Riemannian manifolds. Among others, we provide (non-)existence results for such eigenfamilies, examine topological consequences of the existence of eigenfamilies and classify <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>,</mo>\n <mi>μ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\lambda,\\mu)$</annotation>\n </semantics></math>-eigenfamilies on flat tori. It is further shown that for <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>=</mo>\n <msub>\n <mi>f</mi>\n <mn>1</mn>\n </msub>\n <mo>+</mo>\n <mi>i</mi>\n <msub>\n <mi>f</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$f=f_1+i f_2$</annotation>\n </semantics></math> being an eigenfunction decomposed into its real and its imaginary part, the powers <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msubsup>\n <mi>f</mi>\n <mn>1</mn>\n <mi>a</mi>\n </msubsup>\n <msubsup>\n <mi>f</mi>\n <mn>2</mn>\n <mi>b</mi>\n </msubsup>\n <mo>∣</mo>\n <mi>a</mi>\n <mo>,</mo>\n <mi>b</mi>\n <mo>∈</mo>\n <mi>N</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace f_1^a f_2^b\\mid a,b\\in \\mathbb N\\rbrace$</annotation>\n </semantics></math> satisfy highly rigid orthogonality relations in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2(M)$</annotation>\n </semantics></math>. In establishing these orthogonality relations, one is led to combinatorial identities involving determinants of products of binomials, which we view as being of independent interest.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70228","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70228","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study globally defined ( λ , μ ) $(\lambda,\mu)$ -eigenfamilies on closed Riemannian manifolds. Among others, we provide (non-)existence results for such eigenfamilies, examine topological consequences of the existence of eigenfamilies and classify ( λ , μ ) $(\lambda,\mu)$ -eigenfamilies on flat tori. It is further shown that for f = f 1 + i f 2 $f=f_1+i f_2$ being an eigenfunction decomposed into its real and its imaginary part, the powers { f 1 a f 2 b a , b N } $\lbrace f_1^a f_2^b\mid a,b\in \mathbb N\rbrace$ satisfy highly rigid orthogonality relations in L 2 ( M ) $L^2(M)$ . In establishing these orthogonality relations, one is led to combinatorial identities involving determinants of products of binomials, which we view as being of independent interest.

Abstract Image

Abstract Image

闭流形上的全局特征族
研究了闭黎曼流形上全局定义的(λ, μ) $(\lambda,\mu)$ -特征族。其中,我们提供了这些特征族的(不)存在性结果,检查了特征族存在的拓扑结果,并在平坦环面上分类了(λ, μ) $(\lambda,\mu)$ -特征族。进一步证明,当f = f 1 + i f 2 $f=f_1+i f_2$是一个分解为实部和虚部的特征函数时,幂{ f 1a f 2b∣a, b∈N }$\lbrace f_1^a f_2^b\mid a,b\in \mathbb N\rbrace$在l2 (M) $L^2(M)$中满足高度刚性正交关系。在建立这些正交关系的过程中,我们得到了包含二项乘积的行列式的组合恒等式,我们认为这是一个独立的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信