{"title":"Strong arc decompositions of split digraphs","authors":"Jørgen Bang-Jensen, Yun Wang","doi":"10.1002/jgt.23157","DOIUrl":"10.1002/jgt.23157","url":null,"abstract":"<p>A <i>strong arc decomposition</i> of a digraph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>V</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>A</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow></math> is a partition of its arc set <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>A</mi>\u0000 </mrow></math> into two sets <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>A</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>A</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow></math> such that the digraph <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>D</mi>\u0000 \u0000 <mi>i</mi>\u0000 </msub>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>V</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>A</mi>\u0000 \u0000 <mi>i</mi>\u0000 </msub>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow></math> is strong for <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>i</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow></math>. Bang-Jensen and Yeo conjectured that there is some <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>K</mi>\u0000 </mrow></math> such that every <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>K</mi>\u0000 </mrow></math>-arc-strong digraph has a strong arc decomposition. They also proved that with one exception on four vertices every 2-arc-strong semicomplete digraph has a strong arc decomposition. Bang-Jensen and Huang extended this result to locally semicomplete digraphs by proving that every 2-arc-strong locally semicomplete digraph which is not the square of an even cycle h","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"5-26"},"PeriodicalIF":0.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23157","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability of Rose Window graphs","authors":"Milad Ahanjideh, István Kovács, Klavdija Kutnar","doi":"10.1002/jgt.23162","DOIUrl":"10.1002/jgt.23162","url":null,"abstract":"<p>A graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>Γ</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${rm{Gamma }}$</annotation>\u0000 </semantics></math> is said to be stable if for the direct product <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>Γ</mi>\u0000 \u0000 <mo>×</mo>\u0000 \u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mtext>Aut</mtext>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>Γ</mi>\u0000 \u0000 <mo>×</mo>\u0000 \u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${rm{Gamma }}times {{bf{K}}}_{2},text{Aut}({rm{Gamma }}times {{bf{K}}}_{2})$</annotation>\u0000 </semantics></math> is isomorphic to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mtext>Aut</mtext>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>Γ</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>×</mo>\u0000 \u0000 <msub>\u0000 <mi>Z</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $text{Aut}({rm{Gamma }})times {{mathbb{Z}}}_{2}$</annotation>\u0000 </semantics></math>; otherwise, it is called unstable. An unstable graph is called nontrivially unstable when it is not bipartite and no two vertices have the same neighborhood. Wilson described nine families of unstable Rose Window graphs and conjectured that these contain all nontrivially unstable Rose Window graphs (2008). In this paper we show that the conjecture is true.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"810-832"},"PeriodicalIF":0.9,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}