{"title":"Local version of Vizing's theorem for multigraphs","authors":"Clinton T. Conley, Jan Grebík, Oleg Pikhurko","doi":"10.1002/jgt.23155","DOIUrl":null,"url":null,"abstract":"<p>Extending a result of Christiansen, we prove that every multigraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>E</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $G=(V,E)$</annotation>\n </semantics></math> admits a proper edge colouring <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϕ</mi>\n \n <mo>:</mo>\n \n <mi>E</mi>\n \n <mo>→</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n <mspace></mspace>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\phi :E\\to \\{1,2,\\ldots \\,\\}$</annotation>\n </semantics></math> which is <i>local</i>, that is, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϕ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>e</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mi>max</mi>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mi>d</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>x</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mi>π</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>x</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>d</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>y</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mi>π</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>y</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\phi (e)\\leqslant \\max \\{d(x)+\\pi (x),d(y)+\\pi (y)\\}$</annotation>\n </semantics></math> for every edge <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>e</mi>\n </mrow>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> with end-points <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>x</mi>\n \n <mo>,</mo>\n \n <mi>y</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n </mrow>\n </mrow>\n <annotation> $x,y\\in V$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>z</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $d(z)$</annotation>\n </semantics></math> (resp. <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>π</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>z</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\pi (z)$</annotation>\n </semantics></math>) denotes the degree of a vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>z</mi>\n </mrow>\n </mrow>\n <annotation> $z$</annotation>\n </semantics></math> (resp. the maximum edge multiplicity at <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>z</mi>\n </mrow>\n </mrow>\n <annotation> $z$</annotation>\n </semantics></math>). This is derived from a local version of the Fan Equation.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"693-701"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23155","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23155","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Extending a result of Christiansen, we prove that every multigraph admits a proper edge colouring which is local, that is, for every edge with end-points , where (resp. ) denotes the degree of a vertex (resp. the maximum edge multiplicity at ). This is derived from a local version of the Fan Equation.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .