{"title":"Counting circuit double covers","authors":"Radek Hušek, Robert Šámal","doi":"10.1002/jgt.23187","DOIUrl":"https://doi.org/10.1002/jgt.23187","url":null,"abstract":"<p>We study a counting version of Cycle Double Cover Conjecture. We discuss why it is more interesting to count circuits (i.e., graphs isomorphic to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>C</mi>\u0000 \u0000 <mi>k</mi>\u0000 </msub>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${C}_{k}$</annotation>\u0000 </semantics></math> for some <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>) instead of cycles (graphs with all degrees even). We give an almost-exponential lower bound for graphs with a surface embedding of representativity at least 4. We also prove an exponential lower bound for planar graphs. We conjecture that any bridgeless cubic graph has at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mn>2</mn>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>/</mo>\u0000 \u0000 <mn>2</mn>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${2}^{n/2-1}$</annotation>\u0000 </semantics></math> circuit double covers and we show an infinite class of graphs for which this bound is tight.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"374-395"},"PeriodicalIF":0.9,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23187","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-Hamiltonian Cartesian products of two even dicycles","authors":"Kenta Noguchi, Carol T. Zamfirescu","doi":"10.1002/jgt.23185","DOIUrl":"https://doi.org/10.1002/jgt.23185","url":null,"abstract":"<p>In this note it is proven that there exist infinitely many positive integers <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 </mrow>\u0000 <annotation> $a$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>b</mi>\u0000 </mrow>\u0000 <annotation> $b$</annotation>\u0000 </semantics></math> such that the Cartesian product of a directed cycle of length <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>a</mi>\u0000 </mrow>\u0000 <annotation> $2a$</annotation>\u0000 </semantics></math> and a directed cycle of length <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>b</mi>\u0000 </mrow>\u0000 <annotation> $2b$</annotation>\u0000 </semantics></math> is non-Hamiltonian. In particular, the Cartesian product of an 880-dicycle and a 4368-dicycle is non-Hamiltonian. We also prove that there is no such graph on fewer than <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>880</mn>\u0000 \u0000 <mo>⋅</mo>\u0000 \u0000 <mn>4368</mn>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mn>3</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>843</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>840</mn>\u0000 </mrow>\u0000 <annotation> $880cdot 4368=3,843,840$</annotation>\u0000 </semantics></math> vertices, which is rather astonishing.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"368-373"},"PeriodicalIF":0.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graph curvature and local discrepancy","authors":"Paul Horn, Adam Purcilly, Alex Stevens","doi":"10.1002/jgt.23176","DOIUrl":"https://doi.org/10.1002/jgt.23176","url":null,"abstract":"<p>In recent years, discrete notions of curvature have been defined and exploited to understand various geometric properties of graphs; especially regarding heat flow, and spectral properties. In this paper, we study various combinatorial properties implied by satisfying the Bakry–Émery curvature dimension inequality <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>C</mi>\u0000 \u0000 <mi>D</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>∞</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>K</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $CD(infty ,K)$</annotation>\u0000 </semantics></math>. In particular we derive a local discrepancy inequality, similar in spirit to the expander mixing lemma from spectral graph theory, which certifies a type of “local pseudo-randomness” of the edge set of the graph, for graphs satisfying a curvature lower bound. In addition, several other consequences are derived regarding graph connectivity and cycle statistics of the graph.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"337-360"},"PeriodicalIF":0.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Short rainbow cycles for families of matchings and triangles","authors":"He Guo","doi":"10.1002/jgt.23183","DOIUrl":"https://doi.org/10.1002/jgt.23183","url":null,"abstract":"<p>A generalization of the famous Caccetta–Häggkvist conjecture, suggested by Aharoni, is that any family <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 \u0000 <mo>=</mo>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>…</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>F</mi>\u0000 \u0000 <mi>n</mi>\u0000 </msub>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${rm{ {mathcal F} }}=({F}_{1},ldots ,{F}_{n})$</annotation>\u0000 </semantics></math> of sets of edges in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mi>n</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${K}_{n}$</annotation>\u0000 </semantics></math>, each of size <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>, has a rainbow cycle of length at most <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>⌈</mo>\u0000 \u0000 <mfrac>\u0000 <mi>n</mi>\u0000 \u0000 <mi>k</mi>\u0000 </mfrac>\u0000 \u0000 <mo>⌉</mo>\u0000 </mrow>\u0000 <annotation> $lceil frac{n}{k}rceil $</annotation>\u0000 </semantics></math>. In works by the author with Aharoni and by the author with Aharoni, Berger, Chudnovsky, and Zerbib, it was shown that asymptotically this can be improved to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>O</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>log</mi>\u0000 \u0000 <mi>n</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $O(mathrm{log}n)$</annotation>\u0000 </se","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"325-336"},"PeriodicalIF":0.9,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23183","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"d\u0000 \u0000 $d$\u0000 -connectivity of the random graph with restricted budget","authors":"Lyuben Lichev","doi":"10.1002/jgt.23180","DOIUrl":"https://doi.org/10.1002/jgt.23180","url":null,"abstract":"<p>In this short note, we consider a graph process recently introduced by Frieze, Krivelevich and Michaeli. In their model, the edges of the complete graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mi>n</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${K}_{n}$</annotation>\u0000 </semantics></math> are ordered uniformly at random and are then revealed consecutively to a player called Builder. At every round, Builder must decide if they accept the edge proposed at this round or not. We prove that, for every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation> $dge 2$</annotation>\u0000 </semantics></math>, Builder can construct a spanning <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 </mrow>\u0000 <annotation> $d$</annotation>\u0000 </semantics></math>-connected graph after <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mi>o</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mi>n</mi>\u0000 \u0000 <mi>log</mi>\u0000 \u0000 <mo> </mo>\u0000 \u0000 <mi>n</mi>\u0000 \u0000 <mo>/</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation> $(1+o(1))nmathrm{log}unicode{x0200A}n/2$</annotation>\u0000 </semantics></math> rounds by accepting <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mi>o</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mi>d</mi>\u0000 \u0000 <mi>n</mi>\u0000 \u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"293-312"},"PeriodicalIF":0.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}