Agnijo Banerjee, João Pedro Marciano, Adva Mond, Jan Petr, Julien Portier
{"title":"The Complexity of Decomposing a Graph into a Matching and a Bounded Linear Forest","authors":"Agnijo Banerjee, João Pedro Marciano, Adva Mond, Jan Petr, Julien Portier","doi":"10.1002/jgt.23208","DOIUrl":"https://doi.org/10.1002/jgt.23208","url":null,"abstract":"<div>\u0000 \u0000 <p>Deciding whether a graph can be edge-decomposed into a matching and a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23208:jgt23208-math-0001\" wiley:location=\"equation/jgt23208-math-0001.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\u0000 </semantics></math>-bounded linear forest was recently shown by Campbell, Hörsch, and Moore to be nonedeterministic Polynomial time (NP)-complete for every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>9</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23208:jgt23208-math-0002\" wiley:location=\"equation/jgt23208-math-0002.png\"><mrow><mrow><mi>k</mi><mo>unicode{x02265}</mo><mn>9</mn></mrow></mrow></math></annotation>\u0000 </semantics></math>, and solvable in polynomial time for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23208:jgt23208-math-0003\" wiley:location=\"equation/jgt23208-math-0003.png\"><mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></mrow></mrow></math></annotation>\u0000 </semantics></math>. In the first part of this paper, we close this gap by showing that this problem is NP-complete for every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>3</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23208:jgt23208-math-0004\" wiley:location=\"equation/jgt23208-math-0004.png\"><mrow><mrow><mi>k</mi><mo>unicode{x02265}</mo><mn>3</mn>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"76-87"},"PeriodicalIF":0.9,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Ubiquity of Oriented Double Rays","authors":"Florian Gut, Thilo Krill, Florian Reich","doi":"10.1002/jgt.23216","DOIUrl":"https://doi.org/10.1002/jgt.23216","url":null,"abstract":"<p>A digraph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0001\" wiley:location=\"equation/jgt23216-math-0001.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\u0000 </semantics></math> is called <i>ubiquitous</i> if every digraph that contains arbitrarily many vertex-disjoint copies of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0002\" wiley:location=\"equation/jgt23216-math-0002.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\u0000 </semantics></math> also contains infinitely many vertex-disjoint copies of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0003\" wiley:location=\"equation/jgt23216-math-0003.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\u0000 </semantics></math>. We study oriented double rays, that is, digraphs <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0004\" wiley:location=\"equation/jgt23216-math-0004.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\u0000 </semantics></math> whose underlying undirected graphs are double rays. Calling a vertex of an oriented double ray a turn if it has in-degree or out-degree 2, we prove that an oriented double ray with at least one turn is ubiquitous if and only if it has a (finite) odd number of turns. It remains an open problem to determine whether the consistently oriented double ray is ubiquitous.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"62-67"},"PeriodicalIF":0.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23216","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Packing Colourings in Complete Bipartite Graphs and the Inverse Problem for Correspondence Packing","authors":"Stijn Cambie, Rimma Hämäläinen","doi":"10.1002/jgt.23215","DOIUrl":"https://doi.org/10.1002/jgt.23215","url":null,"abstract":"<div>\u0000 \u0000 <p>Applications of graph colouring often involve taking restrictions into account, and it is desirable to have multiple (disjoint) solutions. In the optimal case, where there is a partition into disjoint colourings, we speak of a packing. However, even for complete bipartite graphs, the list chromatic number can be arbitrarily large, and its exact determination is generally difficult. For the packing variant, this question becomes even harder. In this paper, we study the correspondence- and list-packing numbers of (asymmetric) complete bipartite graphs. In the most asymmetric cases, Latin squares come into play. Our results show that every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>z</mi>\u0000 \u0000 <mo>∈</mo>\u0000 \u0000 <msup>\u0000 <mi>Z</mi>\u0000 \u0000 <mo>+</mo>\u0000 </msup>\u0000 \u0000 <mo></mo>\u0000 \u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <mn>3</mn>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23215:jgt23215-math-0001\" wiley:location=\"equation/jgt23215-math-0001.png\"><mrow><mrow><mi>z</mi><mo>unicode{x02208}</mo><msup><mi mathvariant=\"double-struck\">Z</mi><mo>unicode{x0002B}</mo></msup><mo>unicode{x0005C}</mo><mrow><mo class=\"MathClass-open\">{</mo><mn>3</mn><mo class=\"MathClass-close\">}</mo></mrow></mrow></mrow></math></annotation>\u0000 </semantics></math> can be equal to the correspondence packing number of a graph. We disprove a recent conjecture that relates the list packing number and the list flexibility number. Additionally, we improve the threshold functions for the correspondence packing variant.</p>\u0000 </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"52-61"},"PeriodicalIF":0.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"C10 Has Positive Turán Density in the Hypercube","authors":"Alexandr Grebennikov, João Pedro Marciano","doi":"10.1002/jgt.23217","DOIUrl":"https://doi.org/10.1002/jgt.23217","url":null,"abstract":"<div>\u0000 \u0000 <p>The <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0001\" wiley:location=\"equation/jgt23217-math-0001.png\"><mrow><mrow><mi>n</mi></mrow></mrow></math></annotation>\u0000 </semantics></math>-dimensional hypercube <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>Q</mi>\u0000 \u0000 <mi>n</mi>\u0000 </msub>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0002\" wiley:location=\"equation/jgt23217-math-0002.png\"><mrow><mrow><msub><mi>Q</mi><mi>n</mi></msub></mrow></mrow></math></annotation>\u0000 </semantics></math> is a graph with vertex set <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <mrow>\u0000 <mn>0</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 \u0000 <mi>n</mi>\u0000 </msup>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0003\" wiley:location=\"equation/jgt23217-math-0003.png\"><mrow><mrow><msup><mrow><mo class=\"MathClass-open\">{</mo><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow><mo class=\"MathClass-close\">}</mo></mrow><mi>n</mi></msup></mrow></mrow></math></annotation>\u0000 </semantics></math> such that there is an edge between two vertices if and only if they differ in exactly one coordinate. For any graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23217:j","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"31-34"},"PeriodicalIF":0.9,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}