Daniel Gonçalves, Lucas Picasarri-Arrieta, Amadeus Reinald
{"title":"Brooks-Type Colourings of Digraphs in Linear Time","authors":"Daniel Gonçalves, Lucas Picasarri-Arrieta, Amadeus Reinald","doi":"10.1002/jgt.23266","DOIUrl":"https://doi.org/10.1002/jgt.23266","url":null,"abstract":"<div>\u0000 \u0000 <p>Brooks' Theorem is a fundamental result on graph colouring, stating that the chromatic number of a graph is almost always upper bounded by its maximal degree. Lovász showed that such a colouring may then be computed in linear time when it exists. Many analogues are known for variants of (di)graph colouring, notably for list-colouring and partitions into subgraphs with prescribed degeneracy. One of the most general results of this kind is due to Borodin, Kostochka, and Toft, when asking for classes of colours to satisfy ‘variable degeneracy’ constraints. An extension of this result to digraphs has recently been proposed by Bang-Jensen, Schweser, and Stiebitz, by considering colourings as partitions into ‘variable weakly degenerate’ subdigraphs. Unlike earlier variants, there exists no linear-time algorithm to produce colourings for these generalisations. We introduce the notion of <i>(variable) bidegeneracy</i> for digraphs, capturing multiple (di)graph degeneracy variants. We define the corresponding concept of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-dicolouring, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>f</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mo>…</mo>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>f</mi>\u0000 \u0000 <mi>s</mi>\u0000 </msub>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is a vector of functions, and an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-dicolouring requires vertices coloured <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>i</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> to induce a ‘strictly-<span></span><math>\u0000 <s","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"496-513"},"PeriodicalIF":1.0,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145271724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spectral Extrema of Graphs With Fixed Size: Forbidden a Fan Graph, a Friendship Graph, or a Theta Graph","authors":"Shuchao Li, Sishu Zhao, Lantao Zou","doi":"10.1002/jgt.23287","DOIUrl":"https://doi.org/10.1002/jgt.23287","url":null,"abstract":"<div>\u0000 \u0000 <p>It is well-known that Brualdi-Hoffman-Turán-type problem inquiries about the maximum spectral radius <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>λ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> of an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-free graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> edges. This can be regarded as a spectral characterization of the existence of the subgraph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> within <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. A significant contribution to this problem was made by Nikiforov (2002). He proved that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>λ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>⩽</mo>\u0000 \u0000 <msqrt>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>m</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mn>1</mn>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>∕</mo>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"483-495"},"PeriodicalIF":1.0,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145272923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maximal Spectral Radius of Minimally \u0000 \u0000 \u0000 \u0000 k\u0000 \u0000 \u0000 -(Edge)-Connected Graphs","authors":"Mingqing Zhai, Huiqiu Lin, Jinlong Shu","doi":"10.1002/jgt.23286","DOIUrl":"https://doi.org/10.1002/jgt.23286","url":null,"abstract":"<div>\u0000 \u0000 <p>Minimally <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-connected graphs are the main focus of both structural and extremal graph theory. Perhaps the most heavily investigated parameter of this graph family is the number <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∣</mo>\u0000 \u0000 <msub>\u0000 <mi>V</mi>\u0000 \u0000 <mi>k</mi>\u0000 </msub>\u0000 \u0000 <mo>∣</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> of vertices of degree <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. Mader proved a tight lower bound for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∣</mo>\u0000 \u0000 <msub>\u0000 <mi>V</mi>\u0000 \u0000 <mi>k</mi>\u0000 </msub>\u0000 \u0000 <mo>∣</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, independent of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, and the order <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. In 1981, inspired by matroids, Oxley discovered that in many cases, a considerably better bound can be given by using the size <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> as a parameter. Along this line, Schmidt [Tight bounds for the vertices of degree <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> in minimally <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-connected graphs, J.","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"468-482"},"PeriodicalIF":1.0,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145273069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}