Freddie Illingworth, David R. Wood
下载PDF
{"title":"支配K - t模型","authors":"Freddie Illingworth, David R. Wood","doi":"10.1002/jgt.23272","DOIUrl":null,"url":null,"abstract":"<p>A <i>dominating</i> <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-<i>model</i> in a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a sequence <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> of pairwise disjoint non-empty connected subgraphs of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, such that for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo>⩽</mo>\n \n <mi>i</mi>\n \n <mo><</mo>\n \n <mi>j</mi>\n \n <mo>⩽</mo>\n \n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> every vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mi>j</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> has a neighbour in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. Replacing ‘every vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mi>j</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>’ by ‘some vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mi>j</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>’ retrieves the standard definition of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-model, which is equivalent to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> being a minor of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. We explore in what sense dominating <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-models behave like (non-dominating) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-models. The two notions are equivalent for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>⩽</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> but are already very different for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>=</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math>, since the 1-subdivision of any graph has no dominating <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>4</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-model. Nevertheless, we show that every graph with no dominating <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>4</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-model is 2-degenerate and 3-colourable. More generally, we prove that every graph with no dominating <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-model is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mn>2</mn>\n \n <mrow>\n <mi>t</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>-colourable. Motivated by the connection to chromatic number, we study the maximum average degree of graphs with no dominating <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-model. We give an upper bound of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mn>2</mn>\n \n <mrow>\n <mi>t</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> and show that random graphs provide a lower bound of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>−</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>t</mi>\n <mspace></mspace>\n \n <mi>log</mi>\n <mspace></mspace>\n \n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math>, which we conjecture is asymptotically tight. This result is in contrast to the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-minor-free setting, where the maximum average degree is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Θ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>t</mi>\n \n <msqrt>\n <mi>log</mi>\n <mspace></mspace>\n \n <mi>t</mi>\n </msqrt>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. A natural strengthening of Hadwiger's conjecture arises: Is every graph with no dominating <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-model <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-colourable? We provide two pieces of evidence for this: (1) It is true for almost every graph. (2) Every graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> with no dominating <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-model has a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-colourable induced subgraph on at least half the vertices, which implies there is an independent set of size at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mrow>\n <mo>|</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n </mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mi>t</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n </mfrac>\n </mrow>\n </mrow>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"448-456"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23272","citationCount":"0","resultStr":"{\"title\":\"Dominating \\n \\n \\n \\n \\n K\\n t\\n \\n \\n \\n -Models\",\"authors\":\"Freddie Illingworth, David R. Wood\",\"doi\":\"10.1002/jgt.23272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>dominating</i> <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-<i>model</i> in a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a sequence <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>T</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> of pairwise disjoint non-empty connected subgraphs of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, such that for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>⩽</mo>\\n \\n <mi>i</mi>\\n \\n <mo><</mo>\\n \\n <mi>j</mi>\\n \\n <mo>⩽</mo>\\n \\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> every vertex in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mi>j</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> has a neighbour in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. Replacing ‘every vertex in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mi>j</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>’ by ‘some vertex in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mi>j</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>’ retrieves the standard definition of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-model, which is equivalent to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> being a minor of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. We explore in what sense dominating <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-models behave like (non-dominating) <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-models. The two notions are equivalent for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>⩽</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> but are already very different for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>=</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, since the 1-subdivision of any graph has no dominating <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mn>4</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-model. Nevertheless, we show that every graph with no dominating <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mn>4</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-model is 2-degenerate and 3-colourable. More generally, we prove that every graph with no dominating <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-model is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mn>2</mn>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math>-colourable. Motivated by the connection to chromatic number, we study the maximum average degree of graphs with no dominating <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-model. We give an upper bound of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mn>2</mn>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math> and show that random graphs provide a lower bound of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mn>1</mn>\\n \\n <mo>−</mo>\\n \\n <mi>o</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>1</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>t</mi>\\n <mspace></mspace>\\n \\n <mi>log</mi>\\n <mspace></mspace>\\n \\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, which we conjecture is asymptotically tight. This result is in contrast to the <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-minor-free setting, where the maximum average degree is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Θ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>t</mi>\\n \\n <msqrt>\\n <mi>log</mi>\\n <mspace></mspace>\\n \\n <mi>t</mi>\\n </msqrt>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. A natural strengthening of Hadwiger's conjecture arises: Is every graph with no dominating <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-model <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>-colourable? We provide two pieces of evidence for this: (1) It is true for almost every graph. (2) Every graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with no dominating <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-model has a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>-colourable induced subgraph on at least half the vertices, which implies there is an independent set of size at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mfrac>\\n <mrow>\\n <mo>|</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>|</mo>\\n </mrow>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>t</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mfrac>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"110 4\",\"pages\":\"448-456\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23272\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23272\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23272","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用