支配K - t模型

IF 1 3区 数学 Q2 MATHEMATICS
Freddie Illingworth, David R. Wood
{"title":"支配K - t模型","authors":"Freddie Illingworth,&nbsp;David R. Wood","doi":"10.1002/jgt.23272","DOIUrl":null,"url":null,"abstract":"<p>A <i>dominating</i> <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-<i>model</i> in a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a sequence <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> of pairwise disjoint non-empty connected subgraphs of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, such that for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo>⩽</mo>\n \n <mi>i</mi>\n \n <mo>&lt;</mo>\n \n <mi>j</mi>\n \n <mo>⩽</mo>\n \n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> every vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mi>j</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> has a neighbour in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. Replacing ‘every vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mi>j</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>’ by ‘some vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mi>j</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>’ retrieves the standard definition of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-model, which is equivalent to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> being a minor of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. We explore in what sense dominating <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-models behave like (non-dominating) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-models. The two notions are equivalent for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>⩽</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> but are already very different for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>=</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math>, since the 1-subdivision of any graph has no dominating <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>4</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-model. Nevertheless, we show that every graph with no dominating <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>4</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-model is 2-degenerate and 3-colourable. More generally, we prove that every graph with no dominating <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-model is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mn>2</mn>\n \n <mrow>\n <mi>t</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>-colourable. Motivated by the connection to chromatic number, we study the maximum average degree of graphs with no dominating <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-model. We give an upper bound of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mn>2</mn>\n \n <mrow>\n <mi>t</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> and show that random graphs provide a lower bound of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>−</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>t</mi>\n <mspace></mspace>\n \n <mi>log</mi>\n <mspace></mspace>\n \n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math>, which we conjecture is asymptotically tight. This result is in contrast to the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-minor-free setting, where the maximum average degree is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Θ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>t</mi>\n \n <msqrt>\n <mi>log</mi>\n <mspace></mspace>\n \n <mi>t</mi>\n </msqrt>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. A natural strengthening of Hadwiger's conjecture arises: Is every graph with no dominating <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-model <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-colourable? We provide two pieces of evidence for this: (1) It is true for almost every graph. (2) Every graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> with no dominating <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-model has a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-colourable induced subgraph on at least half the vertices, which implies there is an independent set of size at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mrow>\n <mo>|</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n </mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mi>t</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n </mfrac>\n </mrow>\n </mrow>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"448-456"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23272","citationCount":"0","resultStr":"{\"title\":\"Dominating \\n \\n \\n \\n \\n K\\n t\\n \\n \\n \\n -Models\",\"authors\":\"Freddie Illingworth,&nbsp;David R. Wood\",\"doi\":\"10.1002/jgt.23272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>dominating</i> <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-<i>model</i> in a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a sequence <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>T</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> of pairwise disjoint non-empty connected subgraphs of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, such that for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>⩽</mo>\\n \\n <mi>i</mi>\\n \\n <mo>&lt;</mo>\\n \\n <mi>j</mi>\\n \\n <mo>⩽</mo>\\n \\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> every vertex in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mi>j</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> has a neighbour in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. Replacing ‘every vertex in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mi>j</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>’ by ‘some vertex in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mi>j</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>’ retrieves the standard definition of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-model, which is equivalent to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> being a minor of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. We explore in what sense dominating <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-models behave like (non-dominating) <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-models. The two notions are equivalent for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>⩽</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> but are already very different for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>=</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, since the 1-subdivision of any graph has no dominating <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mn>4</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-model. Nevertheless, we show that every graph with no dominating <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mn>4</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-model is 2-degenerate and 3-colourable. More generally, we prove that every graph with no dominating <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-model is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mn>2</mn>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math>-colourable. Motivated by the connection to chromatic number, we study the maximum average degree of graphs with no dominating <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-model. We give an upper bound of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mn>2</mn>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math> and show that random graphs provide a lower bound of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mn>1</mn>\\n \\n <mo>−</mo>\\n \\n <mi>o</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>1</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>t</mi>\\n <mspace></mspace>\\n \\n <mi>log</mi>\\n <mspace></mspace>\\n \\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, which we conjecture is asymptotically tight. This result is in contrast to the <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-minor-free setting, where the maximum average degree is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Θ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>t</mi>\\n \\n <msqrt>\\n <mi>log</mi>\\n <mspace></mspace>\\n \\n <mi>t</mi>\\n </msqrt>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. A natural strengthening of Hadwiger's conjecture arises: Is every graph with no dominating <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-model <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>-colourable? We provide two pieces of evidence for this: (1) It is true for almost every graph. (2) Every graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with no dominating <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-model has a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>-colourable induced subgraph on at least half the vertices, which implies there is an independent set of size at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mfrac>\\n <mrow>\\n <mo>|</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>|</mo>\\n </mrow>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>t</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mfrac>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"110 4\",\"pages\":\"448-456\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23272\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23272\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23272","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图G中的主导K - t模型是一个序列(1)……的成对不相交非空连通子图的T (TG ,使得对于1≤I &lt; j≤t中的每个顶点tj在t1中有一个邻居。将tj中的每个顶点替换为tj中的某个顶点检索K - t模型的标准定义,这就相当于K t是G的次元。我们探索在什么意义上支配K - t -模型表现得像(非支配)Kt - 模型。 这两个概念对于t≤3是等价的,但是对于t =已经非常不同了4,因为任何图的1-细分都没有支配的k4 -模型。然而,我们证明了每一个没有主导k4模型的图都是2-简并的和3-可着色的。更普遍的是,我们证明了每一个没有主导K - t模型的图都是2T−2可着色。基于与色数的联系,我们研究了无主导K - t模型的图的最大平均度。我们给出了2t - 2的上界并证明了随机图给出(1−0(1)的下界t log t,我们推测它是渐近紧的。这个结果与K - t -minor-free的情况相反,最大平均度是Θ (t log t) . 哈德维格的猜想自然得到了加强:是否每一个没有支配K的图(T−1)-可着色?我们为此提供了两点证据:(1)几乎对每个图都是正确的。(2)每一个没有支配K t模型的图G都有a(t−1)-可着色诱导子图一半的顶点,这意味着存在一个独立的集合,其大小至少为b| V (G) | 2 t−2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dominating 
         
            
               
                  
                     K
                     t
                  
               
            
         -Models

Dominating K t -Models

A dominating K t -model in a graph G is a sequence ( T 1 , , T t ) of pairwise disjoint non-empty connected subgraphs of G , such that for 1 i < j t every vertex in T j has a neighbour in T i . Replacing ‘every vertex in T j ’ by ‘some vertex in T j ’ retrieves the standard definition of K t -model, which is equivalent to K t being a minor of G . We explore in what sense dominating K t -models behave like (non-dominating) K t -models. The two notions are equivalent for t 3 but are already very different for t = 4 , since the 1-subdivision of any graph has no dominating K 4 -model. Nevertheless, we show that every graph with no dominating K 4 -model is 2-degenerate and 3-colourable. More generally, we prove that every graph with no dominating K t -model is 2 t 2 -colourable. Motivated by the connection to chromatic number, we study the maximum average degree of graphs with no dominating K t -model. We give an upper bound of 2 t 2 and show that random graphs provide a lower bound of ( 1 o ( 1 ) ) t log t , which we conjecture is asymptotically tight. This result is in contrast to the K t -minor-free setting, where the maximum average degree is Θ ( t log t ) . A natural strengthening of Hadwiger's conjecture arises: Is every graph with no dominating K t -model ( t 1 ) -colourable? We provide two pieces of evidence for this: (1) It is true for almost every graph. (2) Every graph G with no dominating K t -model has a ( t 1 ) -colourable induced subgraph on at least half the vertices, which implies there is an independent set of size at least | V ( G ) | 2 t 2 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信