Journal of Graph Theory最新文献

筛选
英文 中文
Arc-disjoint out-branchings and in-branchings in semicomplete digraphs 半完整数图中的弧-不相连外分支和内分支
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-01-03 DOI: 10.1002/jgt.23072
J. Bang-Jensen, Y. Wang
{"title":"Arc-disjoint out-branchings and in-branchings in semicomplete digraphs","authors":"J. Bang-Jensen,&nbsp;Y. Wang","doi":"10.1002/jgt.23072","DOIUrl":"10.1002/jgt.23072","url":null,"abstract":"<p>An out-branching <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>B</mi>\u0000 \u0000 <mi>u</mi>\u0000 \u0000 <mo>+</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation> ${B}_{u}^{+}$</annotation>\u0000 </semantics></math> (in-branching <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>B</mi>\u0000 \u0000 <mi>u</mi>\u0000 \u0000 <mo>−</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation> ${B}_{u}^{-}$</annotation>\u0000 </semantics></math>) in a digraph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 <annotation> $D$</annotation>\u0000 </semantics></math> is a connected spanning subdigraph of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 <annotation> $D$</annotation>\u0000 </semantics></math> in which every vertex except the vertex <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>u</mi>\u0000 </mrow>\u0000 <annotation> $u$</annotation>\u0000 </semantics></math>, called the root, has in-degree (out-degree) one. It is well known that there exists a polynomial algorithm for deciding whether a given digraph has <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math> arc-disjoint out-branchings with prescribed roots (<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math> is part of the input). In sharp contrast to this, it is already NP-complete to decide if a digraph has one out-branching which is arc-disjoint from some in-branching. A digraph is <i>semicomplete</i> if it has no pair of nonadjacent vertices. A <i>tournament</i> is a semicomplete digraph without directed cycles of length 2. In this paper we give a complete classification of semicomplete digraphs that have an out-branching <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>B</mi>\u0000 \u0000 <mi>u</mi>\u0000 \u0000 <mo>+</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation> ${B}_{u}^{+}$</annotation>\u0000 </semantics></math> which is arc-disjoint from some in-branching <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>B</mi>\u0000 \u0000 <mi>v</mi>\u0000 \u0000 <mo","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139093661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New eigenvalue bound for the fractional chromatic number 分数色度数的新特征值约束
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2023-12-27 DOI: 10.1002/jgt.23071
Krystal Guo, Sam Spiro
{"title":"New eigenvalue bound for the fractional chromatic number","authors":"Krystal Guo,&nbsp;Sam Spiro","doi":"10.1002/jgt.23071","DOIUrl":"10.1002/jgt.23071","url":null,"abstract":"<p>Given a graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>, we let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>s</mi>\u0000 <mo>+</mo>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>G</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${s}^{+}(G)$</annotation>\u0000 </semantics></math> denote the sum of the squares of the positive eigenvalues of the adjacency matrix of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>, and we similarly define <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>s</mi>\u0000 <mo>−</mo>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>G</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${s}^{-}(G)$</annotation>\u0000 </semantics></math>. We prove that\u0000\u0000 </p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23071","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139056381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal linear-Vizing relationships for (total) domination in graphs 图中(完全)支配的最佳线性-Vizing 关系
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2023-12-18 DOI: 10.1002/jgt.23070
Michael A. Henning, Paul Horn
{"title":"Optimal linear-Vizing relationships for (total) domination in graphs","authors":"Michael A. Henning,&nbsp;Paul Horn","doi":"10.1002/jgt.23070","DOIUrl":"10.1002/jgt.23070","url":null,"abstract":"<p>A total dominating set in a graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is a set of vertices of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> such that every vertex is adjacent to a vertex of the set. The total domination number <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>γ</mi>\u0000 \u0000 <mi>t</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${gamma }_{t}(G)$</annotation>\u0000 </semantics></math> is the minimum cardinality of a total dominating set in <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>. In this paper, we study the following open problem posed by Yeo. For each <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation> ${rm{Delta }}ge 3$</annotation>\u0000 </semantics></math>, find the smallest value, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>r</mi>\u0000 \u0000 <mi>Δ</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${r}_{{rm{Delta }}}$</annotation>\u0000 </semantics></math>, such that every connected graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> of order at least 3, of order <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>, size <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math>, total domination number <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>γ</mi>\u0000 \u0000 <mi>t</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${gamma }_{t}$</annotation>\u0000 </semantics></math>, and bounded maximum degree <math>\u0000 <semantics>\u0000 <mrow>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138826097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classes of intersection digraphs with good algorithmic properties 具有良好算法特性的交点图类
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2023-12-18 DOI: 10.1002/jgt.23065
Lars Jaffke, O-joung Kwon, Jan Arne Telle
{"title":"Classes of intersection digraphs with good algorithmic properties","authors":"Lars Jaffke,&nbsp;O-joung Kwon,&nbsp;Jan Arne Telle","doi":"10.1002/jgt.23065","DOIUrl":"10.1002/jgt.23065","url":null,"abstract":"<p>While intersection graphs play a central role in the algorithmic analysis of hard problems on undirected graphs, the role of intersection <i>digraphs</i> in algorithms is much less understood. We present several contributions towards a better understanding of the algorithmic treatment of intersection digraphs. First, we introduce natural classes of intersection digraphs that generalize several classes studied in the literature. Second, we define the directed locally checkable vertex (DLCV) problems, which capture many well-studied problems on digraphs, such as \u0000<span>(Independent) Dominating Set</span>, \u0000<span>Kernel</span>, and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math>-<span>Homomorphism.</span> Third, we give a new width measure of digraphs, <i>bi-mim-width</i>, and show that the DLCV problems are polynomial-time solvable when we are provided a decomposition of small bi-mim-width. Fourth, we show that several classes of intersection digraphs have bounded bi-mim-width, implying that we can solve all DLCV problems on these classes in polynomial time given an intersection representation of the input digraph. We identify reflexivity as a useful condition to obtain intersection digraph classes of bounded bi-mim-width, and therefore to obtain positive algorithmic results.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138715321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exact values for some unbalanced Zarankiewicz numbers 一些不平衡扎兰凯维奇数的精确值
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2023-12-14 DOI: 10.1002/jgt.23068
Guangzhou Chen, Daniel Horsley, Adam Mammoliti
{"title":"Exact values for some unbalanced Zarankiewicz numbers","authors":"Guangzhou Chen,&nbsp;Daniel Horsley,&nbsp;Adam Mammoliti","doi":"10.1002/jgt.23068","DOIUrl":"10.1002/jgt.23068","url":null,"abstract":"<p>For positive integers <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 </mrow>\u0000 <annotation> $s$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>, the Zarankiewicz number <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Z</mi>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>t</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>n</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${Z}_{s,t}(m,n)$</annotation>\u0000 </semantics></math> is defined to be the maximum number of edges in a bipartite graph with parts of sizes <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> that has no complete bipartite subgraph containing <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 </mrow>\u0000 <annotation> $s$</annotation>\u0000 </semantics></math> vertices in the part of size <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math> vertices in the part of size <math>\u0000 <semantics>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138679930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overfullness of edge-critical graphs with small minimal core degree 最小核心度较小的边缘关键图的过度丰满性
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2023-12-13 DOI: 10.1002/jgt.23069
Yan Cao, Guantao Chen, Guangming Jing, Songling Shan
{"title":"Overfullness of edge-critical graphs with small minimal core degree","authors":"Yan Cao,&nbsp;Guantao Chen,&nbsp;Guangming Jing,&nbsp;Songling Shan","doi":"10.1002/jgt.23069","DOIUrl":"10.1002/jgt.23069","url":null,"abstract":"<p>Let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> be a simple graph. Let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${rm{Delta }}(G)$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>χ</mi>\u0000 \u0000 <mo>′</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $chi ^{prime} (G)$</annotation>\u0000 </semantics></math> be the maximum degree and the chromatic index of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>, respectively. We call <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> <i>overfull</i> if <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>∣</mo>\u0000 \u0000 <mi>E</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>∣</mo>\u0000 \u0000 <mo>∕</mo>\u0000 \u0000 <mrow>\u0000 <mo>⌊</mo>\u0000 \u0000 <mrow>\u0000 <mo>∣</mo>\u0000 \u0000 <mi>V</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>∣</mo>\u0000 \u0000 <mo>∕</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 \u0000 <mo>⌋</mo>\u0000 </mrow>\u0000 \u0000 <mo>&gt;</mo>\u0000 \u0000 <mi>Δ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138679918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rainbow subgraphs in edge-colored complete graphs: Answering two questions by Erdős and Tuza 边色完整图中的彩虹子图:回答厄尔多斯和图扎的两个问题
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2023-12-12 DOI: 10.1002/jgt.23063
Maria Axenovich, Felix C. Clemen
{"title":"Rainbow subgraphs in edge-colored complete graphs: Answering two questions by Erdős and Tuza","authors":"Maria Axenovich,&nbsp;Felix C. Clemen","doi":"10.1002/jgt.23063","DOIUrl":"10.1002/jgt.23063","url":null,"abstract":"<p>An edge-coloring of a complete graph with a set of colors <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 </mrow>\u0000 <annotation> $C$</annotation>\u0000 </semantics></math> is called <i>completely balanced</i> if any vertex is incident to the same number of edges of each color from <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 </mrow>\u0000 <annotation> $C$</annotation>\u0000 </semantics></math>. Erdős and Tuza asked in 1993 whether for any graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math> on <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 </mrow>\u0000 <annotation> $ell $</annotation>\u0000 </semantics></math> edges and any completely balanced coloring of any sufficiently large complete graph using <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 </mrow>\u0000 <annotation> $ell $</annotation>\u0000 </semantics></math> colors contains a rainbow copy of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math>. This question was restated by Erdős in his list of “Some of my favourite problems on cycles and colourings.” We answer this question in the negative for most cliques <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 <mo>=</mo>\u0000 <msub>\u0000 <mi>K</mi>\u0000 <mi>q</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> $F={K}_{q}$</annotation>\u0000 </semantics></math> by giving explicit constructions of respective completely balanced colorings. Further, we answer a related question concerning completely balanced colorings of complete graphs with more colors than the number of edges in the graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138576573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partitioning kite-free planar graphs into two forests 将无筝平面图划分为两个森林
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2023-12-12 DOI: 10.1002/jgt.23062
Yang Wang, Yiqiao Wang, Ko-Wei Lih
{"title":"Partitioning kite-free planar graphs into two forests","authors":"Yang Wang,&nbsp;Yiqiao Wang,&nbsp;Ko-Wei Lih","doi":"10.1002/jgt.23062","DOIUrl":"10.1002/jgt.23062","url":null,"abstract":"<p>A kite is a complete graph on four vertices with one edge removed. It is proved that every planar graph without a kite as subgraph can be partitioned into two induced forests. This resolves a conjecture of Raspaud and Wang in 2008.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138576182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Turán problems with bounded matching number 关于匹配数有界的图兰问题
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2023-12-06 DOI: 10.1002/jgt.23067
Dániel Gerbner
{"title":"On Turán problems with bounded matching number","authors":"Dániel Gerbner","doi":"10.1002/jgt.23067","DOIUrl":"10.1002/jgt.23067","url":null,"abstract":"<p>Very recently, Alon and Frankl initiated the study of the maximum number of edges in <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-vertex <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math>-free graphs with matching number at most <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 </mrow>\u0000 <annotation> $s$</annotation>\u0000 </semantics></math>. For fixed <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 </mrow>\u0000 <annotation> $s$</annotation>\u0000 </semantics></math>, we determine this number apart from a constant additive term. We also obtain several exact results.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138545944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
5-Coloring reconfiguration of planar graphs with no short odd cycles 5 无奇数短周期平面图的着色重构
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2023-12-06 DOI: 10.1002/jgt.23064
Daniel W. Cranston, Reem Mahmoud
{"title":"5-Coloring reconfiguration of planar graphs with no short odd cycles","authors":"Daniel W. Cranston,&nbsp;Reem Mahmoud","doi":"10.1002/jgt.23064","DOIUrl":"10.1002/jgt.23064","url":null,"abstract":"<p>The coloring reconfiguration graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>C</mi>\u0000 \u0000 <mi>k</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${{mathscr{C}}}_{k}(G)$</annotation>\u0000 </semantics></math> has as its vertex set all the proper <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-colorings of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>, and two vertices in <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>C</mi>\u0000 \u0000 <mi>k</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${{mathscr{C}}}_{k}(G)$</annotation>\u0000 </semantics></math> are adjacent if their corresponding <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-colorings differ on a single vertex. Cereceda conjectured that if an <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-vertex graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 </mrow>\u0000 <annotation> $d$</annotation>\u0000 </semantics></math>-degenerate and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mi>d</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation> $kge d+2$</annotation>\u0000 </semantics></math>, then the diameter of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>C</mi>\u0000 \u0000 <mi>k</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138546072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信