Journal of Graph Theory最新文献

筛选
英文 中文
A tight upper bound on the average order of dominating sets of a graph 图的支配集平均阶数的严格上限
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-06-17 DOI: 10.1002/jgt.23143
Iain Beaton, Ben Cameron
{"title":"A tight upper bound on the average order of dominating sets of a graph","authors":"Iain Beaton, Ben Cameron","doi":"10.1002/jgt.23143","DOIUrl":"https://doi.org/10.1002/jgt.23143","url":null,"abstract":"<p>In this paper we study the average order of dominating sets in a graph, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mstyle>\u0000 <mspace></mspace>\u0000 \u0000 <mtext>avd</mtext>\u0000 <mspace></mspace>\u0000 </mstyle>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $,text{avd},(G)$</annotation>\u0000 </semantics></math>. Like other average graph parameters, the extremal graphs are of interest. Beaton and Brown conjectured that for all graphs <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> of order <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> without isolated vertices, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mspace></mspace>\u0000 \u0000 <mtext>avd</mtext>\u0000 <mspace></mspace>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>≤</mo>\u0000 \u0000 <mn>2</mn>\u0000 \u0000 <mi>n</mi>\u0000 \u0000 <mo>/</mo>\u0000 \u0000 <mn>3</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $,text{avd},(G)le 2n/3$</annotation>\u0000 </semantics></math>. Recently, Erey proved the conjecture for forests without isolated vertices. In this paper we prove the conjecture and classify which graphs have <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mspace></mspace>\u0000 \u0000 <mtext>avd</mtext>\u0000 <mspace></mspace>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"463-477"},"PeriodicalIF":0.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23143","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some results and problems on clique coverings of hypergraphs 关于超图的簇覆盖的一些结果和问题
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-06-11 DOI: 10.1002/jgt.23111
Vojtech Rödl, Marcelo Sales
{"title":"Some results and problems on clique coverings of hypergraphs","authors":"Vojtech Rödl,&nbsp;Marcelo Sales","doi":"10.1002/jgt.23111","DOIUrl":"https://doi.org/10.1002/jgt.23111","url":null,"abstract":"<p>For a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-uniform hypergraph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math> we consider the parameter <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Θ</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>F</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${rm{Theta }}(F)$</annotation>\u0000 </semantics></math>, the minimum size of a clique cover of the edge set of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math>. We derive bounds on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Θ</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>F</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${rm{Theta }}(F)$</annotation>\u0000 </semantics></math> for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math> belonging to various classes of hypergraphs.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 2","pages":"442-457"},"PeriodicalIF":0.9,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ramsey-type problems on induced covers and induced partitions toward the Gyárfás–Sumner conjecture 走向 Gyárfás-Sumner 猜想的诱导盖和诱导分区上的拉姆齐型问题
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-06-06 DOI: 10.1002/jgt.23124
Shuya Chiba, Michitaka Furuya
{"title":"Ramsey-type problems on induced covers and induced partitions toward the Gyárfás–Sumner conjecture","authors":"Shuya Chiba,&nbsp;Michitaka Furuya","doi":"10.1002/jgt.23124","DOIUrl":"https://doi.org/10.1002/jgt.23124","url":null,"abstract":"&lt;p&gt;Gyárfás and Sumner independently conjectured that for every tree &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $T$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, there exists a function &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${f}_{T}:{mathbb{N}}to {mathbb{N}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; such that every &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $T$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-free graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; satisfies &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;≤&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ω&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $chi (G)le {f}_{T}(omega (G))$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, where &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $chi (G)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ω&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 2","pages":"419-441"},"PeriodicalIF":0.9,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kempe equivalent list colorings revisited Kempe 等价表着色再探讨
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-06-04 DOI: 10.1002/jgt.23142
Dibyayan Chakraborty, Carl Feghali, Reem Mahmoud
{"title":"Kempe equivalent list colorings revisited","authors":"Dibyayan Chakraborty,&nbsp;Carl Feghali,&nbsp;Reem Mahmoud","doi":"10.1002/jgt.23142","DOIUrl":"https://doi.org/10.1002/jgt.23142","url":null,"abstract":"&lt;p&gt;A &lt;i&gt;Kempe chain&lt;/i&gt; on colors &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $a$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $b$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a component of the subgraph induced by colors &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $a$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $b$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. A &lt;i&gt;Kempe change&lt;/i&gt; is the operation of interchanging the colors of some Kempe chains. For a list-assignment &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $L$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and an &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $L$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-coloring &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;φ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $varphi $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, a Kempe change is &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $L$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-&lt;i&gt;valid&lt;/i&gt; for &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;φ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $varphi $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; if performing the Kempe change yields another &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $L$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-coloring. Two &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $L$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-colorings are &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $L$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-&lt;i&gt;equivalent&lt;/i&gt; if we can form one from the other by a sequence of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 2","pages":"410-418"},"PeriodicalIF":0.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23142","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the maximum local mean order of sub- k $k$ -trees of a k $k$ -tree 关于 k $k$ 树的子 k $k$ 树的最大局部平均阶数
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-06-02 DOI: 10.1002/jgt.23128
Zhuo Li, Tianlong Ma, Fengming Dong, Xian'an Jin
{"title":"On the maximum local mean order of sub-\u0000 \u0000 \u0000 k\u0000 \u0000 $k$\u0000 -trees of a \u0000 \u0000 \u0000 k\u0000 \u0000 $k$\u0000 -tree","authors":"Zhuo Li,&nbsp;Tianlong Ma,&nbsp;Fengming Dong,&nbsp;Xian'an Jin","doi":"10.1002/jgt.23128","DOIUrl":"10.1002/jgt.23128","url":null,"abstract":"&lt;p&gt;For a &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-tree &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $T$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, a generalization of a tree, the local mean order of sub-&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-trees of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $T$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is the average order of sub-&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-trees of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $T$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; containing a given &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-clique. The problem whether the maximum local mean order of a tree (i.e., a 1-tree) at a vertex is always taken on at a leaf was asked by Jamison in 1984 and was answered by Wagner and Wang in 2016. Actually, they proved that the maximum local mean order of a tree at a vertex occurs either at a leaf or at a vertex of degree 2. In 2018, Stephens and Oellermann asked a similar problem: for any &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-tree &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $T$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, does the maximum local mean order of sub-&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-trees containing a given &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-clique occur at a &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-clique that is not a major &lt;span&gt;&lt;/span","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 2","pages":"393-409"},"PeriodicalIF":0.9,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141273372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Counting connected partitions of graphs 计算图的连接分区
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-06-02 DOI: 10.1002/jgt.23127
Yair Caro, Balázs Patkós, Zsolt Tuza, Máté Vizer
{"title":"Counting connected partitions of graphs","authors":"Yair Caro,&nbsp;Balázs Patkós,&nbsp;Zsolt Tuza,&nbsp;Máté Vizer","doi":"10.1002/jgt.23127","DOIUrl":"https://doi.org/10.1002/jgt.23127","url":null,"abstract":"&lt;p&gt;Motivated by the theorem of Győri and Lovász, we consider the following problem. For a connected graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; on &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; vertices and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $m$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; edges determine the number &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $P(G,k)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of unordered solutions of positive integers &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mo&gt;∑&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${sum }_{i=1}^{k}{m}_{i}=m$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; such that every &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${m}_{i}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is realized by a connected subgraph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${H}_{i}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${m}_{i}$&lt;/annotation&gt;\u0000 &lt;/s","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 2","pages":"381-392"},"PeriodicalIF":0.9,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The maximum number of maximum generalized 4-independent sets in trees 树中最大广义 4 个独立集合的最大数量
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-05-30 DOI: 10.1002/jgt.23122
Pingshan Li, Min Xu
{"title":"The maximum number of maximum generalized 4-independent sets in trees","authors":"Pingshan Li,&nbsp;Min Xu","doi":"10.1002/jgt.23122","DOIUrl":"10.1002/jgt.23122","url":null,"abstract":"&lt;p&gt;A generalized &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-independent set is a set of vertices such that the induced subgraph contains no trees with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-vertices, and the generalized &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-independence number is the cardinality of a maximum &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-independent set in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Zito proved that the maximum number of maximum generalized 2-independent sets in a tree of order &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mfrac&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${2}^{frac{n-3}{2}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is odd, and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mfrac&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${2}^{frac{n-2}{2}}+1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $n$&lt;/annotation&gt;\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 2","pages":"359-380"},"PeriodicalIF":0.9,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141195007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Planar graphs having no cycle of length 4, 7, or 9 are DP-3-colorable 没有长度为 4、7 或 9 的周期的平面图是 DP-3 可着色的
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-05-22 DOI: 10.1002/jgt.23123
Yingli Kang, Ligang Jin, Xuding Zhu
{"title":"Planar graphs having no cycle of length 4, 7, or 9 are DP-3-colorable","authors":"Yingli Kang,&nbsp;Ligang Jin,&nbsp;Xuding Zhu","doi":"10.1002/jgt.23123","DOIUrl":"10.1002/jgt.23123","url":null,"abstract":"<p>This paper proves that every planar graph having no cycle of length 4, 7, or 9 is DP-3-colorable.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 2","pages":"344-358"},"PeriodicalIF":0.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141111900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimum-degree conditions for rainbow triangles 彩虹三角形的最小度数条件
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-05-15 DOI: 10.1002/jgt.23109
Victor Falgas-Ravry, Klas Markström, Eero Räty
{"title":"Minimum-degree conditions for rainbow triangles","authors":"Victor Falgas-Ravry,&nbsp;Klas Markström,&nbsp;Eero Räty","doi":"10.1002/jgt.23109","DOIUrl":"10.1002/jgt.23109","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;≔&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${bf{G}}:= ({G}_{1},{G}_{2},{G}_{3})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a triple of graphs on a common vertex set &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $V$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of size &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. A rainbow triangle in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${bf{G}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a triple of edges &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $({e}_{1},{e}_{2},{e}_{3","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 2","pages":"298-329"},"PeriodicalIF":0.9,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounding the number of odd paths in planar graphs via convex optimization 通过凸优化限定平面图中奇数路径的数量
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-05-15 DOI: 10.1002/jgt.23120
Asaf Cohen Antonir, Asaf Shapira
{"title":"Bounding the number of odd paths in planar graphs via convex optimization","authors":"Asaf Cohen Antonir,&nbsp;Asaf Shapira","doi":"10.1002/jgt.23120","DOIUrl":"10.1002/jgt.23120","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${N}_{{mathscr{P}}}(n,H)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; denote the maximum number of copies of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in an &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; vertex planar graph. The problem of bounding this function for various graphs &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; has been extensively studied since the 70's. A special case that received a lot of attention recently is when &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is the path on &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 \u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $2m+1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; vertices, denoted &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 \u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${P}_{2m+1}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Our main result in this paper is that\u0000\u0000 &lt;/p&gt;&lt;p&gt;This improves upon the previously best known ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 2","pages":"330-343"},"PeriodicalIF":0.9,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23120","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信