{"title":"A tight upper bound on the average order of dominating sets of a graph","authors":"Iain Beaton, Ben Cameron","doi":"10.1002/jgt.23143","DOIUrl":"https://doi.org/10.1002/jgt.23143","url":null,"abstract":"<p>In this paper we study the average order of dominating sets in a graph, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mstyle>\u0000 <mspace></mspace>\u0000 \u0000 <mtext>avd</mtext>\u0000 <mspace></mspace>\u0000 </mstyle>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $,text{avd},(G)$</annotation>\u0000 </semantics></math>. Like other average graph parameters, the extremal graphs are of interest. Beaton and Brown conjectured that for all graphs <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> of order <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> without isolated vertices, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mspace></mspace>\u0000 \u0000 <mtext>avd</mtext>\u0000 <mspace></mspace>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>≤</mo>\u0000 \u0000 <mn>2</mn>\u0000 \u0000 <mi>n</mi>\u0000 \u0000 <mo>/</mo>\u0000 \u0000 <mn>3</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $,text{avd},(G)le 2n/3$</annotation>\u0000 </semantics></math>. Recently, Erey proved the conjecture for forests without isolated vertices. In this paper we prove the conjecture and classify which graphs have <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mspace></mspace>\u0000 \u0000 <mtext>avd</mtext>\u0000 <mspace></mspace>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"463-477"},"PeriodicalIF":0.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23143","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kempe equivalent list colorings revisited","authors":"Dibyayan Chakraborty, Carl Feghali, Reem Mahmoud","doi":"10.1002/jgt.23142","DOIUrl":"https://doi.org/10.1002/jgt.23142","url":null,"abstract":"<p>A <i>Kempe chain</i> on colors <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 </mrow>\u0000 <annotation> $a$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>b</mi>\u0000 </mrow>\u0000 <annotation> $b$</annotation>\u0000 </semantics></math> is a component of the subgraph induced by colors <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 </mrow>\u0000 <annotation> $a$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>b</mi>\u0000 </mrow>\u0000 <annotation> $b$</annotation>\u0000 </semantics></math>. A <i>Kempe change</i> is the operation of interchanging the colors of some Kempe chains. For a list-assignment <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <annotation> $L$</annotation>\u0000 </semantics></math> and an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <annotation> $L$</annotation>\u0000 </semantics></math>-coloring <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>φ</mi>\u0000 </mrow>\u0000 <annotation> $varphi $</annotation>\u0000 </semantics></math>, a Kempe change is <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <annotation> $L$</annotation>\u0000 </semantics></math>-<i>valid</i> for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>φ</mi>\u0000 </mrow>\u0000 <annotation> $varphi $</annotation>\u0000 </semantics></math> if performing the Kempe change yields another <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <annotation> $L$</annotation>\u0000 </semantics></math>-coloring. Two <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <annotation> $L$</annotation>\u0000 </semantics></math>-colorings are <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <annotation> $L$</annotation>\u0000 </semantics></math>-<i>equivalent</i> if we can form one from the other by a sequence of <span></span><math>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 2","pages":"410-418"},"PeriodicalIF":0.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23142","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the maximum local mean order of sub-\u0000 \u0000 \u0000 k\u0000 \u0000 $k$\u0000 -trees of a \u0000 \u0000 \u0000 k\u0000 \u0000 $k$\u0000 -tree","authors":"Zhuo Li, Tianlong Ma, Fengming Dong, Xian'an Jin","doi":"10.1002/jgt.23128","DOIUrl":"10.1002/jgt.23128","url":null,"abstract":"<p>For a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-tree <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> $T$</annotation>\u0000 </semantics></math>, a generalization of a tree, the local mean order of sub-<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-trees of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> $T$</annotation>\u0000 </semantics></math> is the average order of sub-<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-trees of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> $T$</annotation>\u0000 </semantics></math> containing a given <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-clique. The problem whether the maximum local mean order of a tree (i.e., a 1-tree) at a vertex is always taken on at a leaf was asked by Jamison in 1984 and was answered by Wagner and Wang in 2016. Actually, they proved that the maximum local mean order of a tree at a vertex occurs either at a leaf or at a vertex of degree 2. In 2018, Stephens and Oellermann asked a similar problem: for any <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-tree <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> $T$</annotation>\u0000 </semantics></math>, does the maximum local mean order of sub-<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-trees containing a given <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-clique occur at a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-clique that is not a major <span></span","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 2","pages":"393-409"},"PeriodicalIF":0.9,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141273372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}