{"title":"Super stable tensegrities and the Colin de Verdière number \u0000 \u0000 \u0000 \u0000 ν\u0000 \u0000 \u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0001\" wiley:location=\"equation/jgt23188-math-0001.png\"><mrow><mrow><mi>unicode{x003BD}</mi></mrow></mrow></math>","authors":"Ryoshun Oba, Shin-ichi Tanigawa","doi":"10.1002/jgt.23188","DOIUrl":"https://doi.org/10.1002/jgt.23188","url":null,"abstract":"<p>A super stable tensegrity introduced by Connelly in 1982 is a globally rigid discrete structure made from stiff bars and struts connected by cables with tension. We introduce the super stability number of a multigraph as the maximum dimension that a multigraph can be realized as a super stable tensegrity, and show that it equals the Colin de Verdière number <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>ν</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0002\" wiley:location=\"equation/jgt23188-math-0002.png\"><mrow><mrow><mi>unicode{x003BD}</mi></mrow></mrow></math></annotation>\u0000 </semantics></math> minus one. As a corollary we obtain a combinatorial characterization of multigraphs that can be realized as three-dimensional super stable tensegrities. We also show that, for any fixed <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>d</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0003\" wiley:location=\"equation/jgt23188-math-0003.png\"><mrow><mrow><mi>d</mi></mrow></mrow></math></annotation>\u0000 </semantics></math>, there is an infinite family of 3-regular graphs that can be realized as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>d</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0004\" wiley:location=\"equation/jgt23188-math-0004.png\"><mrow><mrow><mi>d</mi></mrow></mrow></math></annotation>\u0000 </semantics></math>-dimensional injective super stable tensegrities.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"401-431"},"PeriodicalIF":0.9,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23188","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}