多色图兰数 II:鲁兹萨-塞梅雷迪定理的一般化以及关于小群和奇数循环的新结果

IF 0.9 3区 数学 Q2 MATHEMATICS
Benedek Kovács, Zoltán Lóránt Nagy
{"title":"多色图兰数 II:鲁兹萨-塞梅雷迪定理的一般化以及关于小群和奇数循环的新结果","authors":"Benedek Kovács,&nbsp;Zoltán Lóránt Nagy","doi":"10.1002/jgt.23147","DOIUrl":null,"url":null,"abstract":"<p>In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mtext>ex</mtext>\n \n <mi>F</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>G</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\text{ex}}_{F}(n,G)$</annotation>\n </semantics></math> denote the maximum number of edge-disjoint copies of a fixed simple graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> that can be placed on an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex ground set without forming a subgraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> whose edges are from different <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math>-copies. The case when both <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> are arbitrary cliques by applying a number theoretic result due to Erdős, Frankl, and Rödl. This extension in turn decides the order of magnitude for a large family of graph pairs, which will be subquadratic, but almost quadratic. Since the linear <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-uniform hypergraph Turán problems to determine <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mtext>ex</mtext>\n \n <mi>r</mi>\n \n <mrow>\n <mi>l</mi>\n \n <mi>i</mi>\n \n <mi>n</mi>\n </mrow>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>G</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\text{ex}}_{r}^{lin}(n,G)$</annotation>\n </semantics></math> form a class of the multicolor Turán problem, following the identity <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mtext>ex</mtext>\n \n <mi>r</mi>\n \n <mrow>\n <mi>l</mi>\n \n <mi>i</mi>\n \n <mi>n</mi>\n </mrow>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>G</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <msub>\n <mtext>ex</mtext>\n \n <msub>\n <mi>K</mi>\n \n <mi>r</mi>\n </msub>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>G</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\text{ex}}_{r}^{lin}(n,G)={\\text{ex}}_{{K}_{r}}(n,G)$</annotation>\n </semantics></math>, our results determine the linear hypergraph Turán numbers of every graph of girth 3 and for every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math> up to a subpolynomial factor. Furthermore, when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a triangle, we settle the case <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>5</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> $F={C}_{5}$</annotation>\n </semantics></math> and give bounds for the cases <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> $F={C}_{2k+1}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\ge 3$</annotation>\n </semantics></math> as well.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"629-641"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicolor Turán numbers II: A generalization of the Ruzsa–Szemerédi theorem and new results on cliques and odd cycles\",\"authors\":\"Benedek Kovács,&nbsp;Zoltán Lóránt Nagy\",\"doi\":\"10.1002/jgt.23147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mtext>ex</mtext>\\n \\n <mi>F</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>G</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\text{ex}}_{F}(n,G)$</annotation>\\n </semantics></math> denote the maximum number of edge-disjoint copies of a fixed simple graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n <annotation> $F$</annotation>\\n </semantics></math> that can be placed on an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-vertex ground set without forming a subgraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> whose edges are from different <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n <annotation> $F$</annotation>\\n </semantics></math>-copies. The case when both <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n <annotation> $F$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n <annotation> $F$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> are arbitrary cliques by applying a number theoretic result due to Erdős, Frankl, and Rödl. This extension in turn decides the order of magnitude for a large family of graph pairs, which will be subquadratic, but almost quadratic. Since the linear <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-uniform hypergraph Turán problems to determine <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mtext>ex</mtext>\\n \\n <mi>r</mi>\\n \\n <mrow>\\n <mi>l</mi>\\n \\n <mi>i</mi>\\n \\n <mi>n</mi>\\n </mrow>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>G</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\text{ex}}_{r}^{lin}(n,G)$</annotation>\\n </semantics></math> form a class of the multicolor Turán problem, following the identity <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mtext>ex</mtext>\\n \\n <mi>r</mi>\\n \\n <mrow>\\n <mi>l</mi>\\n \\n <mi>i</mi>\\n \\n <mi>n</mi>\\n </mrow>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>G</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mtext>ex</mtext>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mi>r</mi>\\n </msub>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>G</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\text{ex}}_{r}^{lin}(n,G)={\\\\text{ex}}_{{K}_{r}}(n,G)$</annotation>\\n </semantics></math>, our results determine the linear hypergraph Turán numbers of every graph of girth 3 and for every <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math> up to a subpolynomial factor. Furthermore, when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a triangle, we settle the case <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mn>5</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> $F={C}_{5}$</annotation>\\n </semantics></math> and give bounds for the cases <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> $F={C}_{2k+1}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n <annotation> $k\\\\ge 3$</annotation>\\n </semantics></math> as well.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 3\",\"pages\":\"629-641\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23147\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23147","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将继续研究图兰的禁止子图问题和鲁兹萨-塞梅雷迪问题的自然概括。让表示一个固定简单图的边不相交副本的最大数目,这些副本可以放在一个-顶点地面集上,而不会形成一个边来自不同副本的子图。当 和 都是三角形时,基本上就可以得出鲁兹萨和塞梅雷迪的定理。我们应用厄尔多斯、弗兰克尔和罗德尔的一个数论结果,将他们的结果推广到和都是任意小块的情况。这一扩展反过来决定了一大系列图对的数量级,它们将是亚二次方的,但几乎是二次方的。由于要确定的线性均匀超图图兰问题构成了多色图兰问题的一个类别,根据同一性,我们的结果确定了每一个周长为 3 的图的线性超图图兰数,并且每一个图的线性超图图兰数都达到了亚对数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multicolor Turán numbers II: A generalization of the Ruzsa–Szemerédi theorem and new results on cliques and odd cycles

In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let ex F ( n , G ) ${\text{ex}}_{F}(n,G)$ denote the maximum number of edge-disjoint copies of a fixed simple graph F $F$ that can be placed on an n $n$ -vertex ground set without forming a subgraph G $G$ whose edges are from different F $F$ -copies. The case when both F $F$ and G $G$ are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when F $F$ and G $G$ are arbitrary cliques by applying a number theoretic result due to Erdős, Frankl, and Rödl. This extension in turn decides the order of magnitude for a large family of graph pairs, which will be subquadratic, but almost quadratic. Since the linear r $r$ -uniform hypergraph Turán problems to determine ex r l i n ( n , G ) ${\text{ex}}_{r}^{lin}(n,G)$ form a class of the multicolor Turán problem, following the identity ex r l i n ( n , G ) = ex K r ( n , G ) ${\text{ex}}_{r}^{lin}(n,G)={\text{ex}}_{{K}_{r}}(n,G)$ , our results determine the linear hypergraph Turán numbers of every graph of girth 3 and for every r $r$ up to a subpolynomial factor. Furthermore, when G $G$ is a triangle, we settle the case F = C 5 $F={C}_{5}$ and give bounds for the cases F = C 2 k + 1 $F={C}_{2k+1}$ , k 3 $k\ge 3$ as well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信