关于图形色度数的最大奇数诱导子图

IF 0.9 3区 数学 Q2 MATHEMATICS
Tao Wang, Baoyindureng Wu
{"title":"关于图形色度数的最大奇数诱导子图","authors":"Tao Wang,&nbsp;Baoyindureng Wu","doi":"10.1002/jgt.23148","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>o</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{o}(G)$</annotation>\n </semantics></math> be the maximum order of an odd induced subgraph of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. In 1992, Scott proposed a conjecture that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>o</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> ${f}_{o}(G)\\ge \\frac{n}{\\chi (G)}$</annotation>\n </semantics></math> for a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> without isolated vertices, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\chi (G)$</annotation>\n </semantics></math> is the chromatic number of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. In this paper, we show that the conjecture is not true for bipartite graphs, but is true for all line graphs. In addition, we also disprove a conjecture of Berman, Wang, and Wargo in 1997, which states that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>o</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n \n <mfenced>\n <mfrac>\n <mi>n</mi>\n \n <mn>4</mn>\n </mfrac>\n </mfenced>\n </mrow>\n </mrow>\n <annotation> ${f}_{o}(G)\\ge 2\\unicode{x0230A}\\frac{n}{4}\\unicode{x0230B}$</annotation>\n </semantics></math> for a connected graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>. Scott's conjecture is open for graphs with chromatic number at least 3.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"578-596"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum odd induced subgraph of a graph concerning its chromatic number\",\"authors\":\"Tao Wang,&nbsp;Baoyindureng Wu\",\"doi\":\"10.1002/jgt.23148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>o</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${f}_{o}(G)$</annotation>\\n </semantics></math> be the maximum order of an odd induced subgraph of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. In 1992, Scott proposed a conjecture that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>o</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mrow>\\n <mi>χ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> ${f}_{o}(G)\\\\ge \\\\frac{n}{\\\\chi (G)}$</annotation>\\n </semantics></math> for a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> of order <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> without isolated vertices, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>χ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\chi (G)$</annotation>\\n </semantics></math> is the chromatic number of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. In this paper, we show that the conjecture is not true for bipartite graphs, but is true for all line graphs. In addition, we also disprove a conjecture of Berman, Wang, and Wargo in 1997, which states that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>o</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n \\n <mfenced>\\n <mfrac>\\n <mi>n</mi>\\n \\n <mn>4</mn>\\n </mfrac>\\n </mfenced>\\n </mrow>\\n </mrow>\\n <annotation> ${f}_{o}(G)\\\\ge 2\\\\unicode{x0230A}\\\\frac{n}{4}\\\\unicode{x0230B}$</annotation>\\n </semantics></math> for a connected graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> of order <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>. Scott's conjecture is open for graphs with chromatic number at least 3.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 3\",\"pages\":\"578-596\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23148\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23148","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 是 .的奇数诱导子图的最大阶数。 1992 年,斯科特(Scott)提出了一个猜想:对于无孤立顶点的阶数图,让 是 .的色度数。 在本文中,我们证明了这一猜想对于二叉图并不成立,但对于所有线图都成立。此外,我们还推翻了 Berman、Wang 和 Wargo 于 1997 年提出的猜想,即对于秩为 .斯科特的猜想对于色度数至少为 3 的图是开放的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum odd induced subgraph of a graph concerning its chromatic number

Let f o ( G ) ${f}_{o}(G)$ be the maximum order of an odd induced subgraph of G $G$ . In 1992, Scott proposed a conjecture that f o ( G ) n χ ( G ) ${f}_{o}(G)\ge \frac{n}{\chi (G)}$ for a graph G $G$ of order n $n$ without isolated vertices, where χ ( G ) $\chi (G)$ is the chromatic number of G $G$ . In this paper, we show that the conjecture is not true for bipartite graphs, but is true for all line graphs. In addition, we also disprove a conjecture of Berman, Wang, and Wargo in 1997, which states that f o ( G ) 2 n 4 ${f}_{o}(G)\ge 2\unicode{x0230A}\frac{n}{4}\unicode{x0230B}$ for a connected graph G $G$ of order n $n$ . Scott's conjecture is open for graphs with chromatic number at least 3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信