广义图兰问题中图对称论证的稳定性

IF 0.9 3区 数学 Q2 MATHEMATICS
Dániel Gerbner, Hilal Hama Karim
{"title":"广义图兰问题中图对称论证的稳定性","authors":"Dániel Gerbner,&nbsp;Hilal Hama Karim","doi":"10.1002/jgt.23151","DOIUrl":null,"url":null,"abstract":"<p>Given graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\text{ex}(n,H,F)$</annotation>\n </semantics></math> denotes the largest number of copies of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math>-free <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex graphs. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>&lt;</mo>\n \n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>r</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $\\chi (H)\\lt \\chi (F)=r+1$</annotation>\n </semantics></math>. We say that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is <i>F-Turán-stable</i> if the following holds. For any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ε</mi>\n \n <mo>&gt;</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n <annotation> $\\varepsilon \\gt 0$</annotation>\n </semantics></math> there exists <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mo>&gt;</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n <annotation> $\\delta \\gt 0$</annotation>\n </semantics></math> such that if an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math>-free graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> contains at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>−</mo>\n \n <mi>δ</mi>\n \n <msup>\n <mi>n</mi>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n <annotation> $\\text{ex}(n,H,F)-\\delta {n}^{| V(H)| }$</annotation>\n </semantics></math> copies of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math>, then the edit distance of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-partite Turán graph is at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ε</mi>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n <annotation> $\\varepsilon {n}^{2}$</annotation>\n </semantics></math>. We say that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is <i>weakly F-Turán-stable</i> if the same holds with the Turán graph replaced by any complete <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-partite graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>T</mi>\n </mrow>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math>. It is known that such stability implies exact results in several cases. We show that complete multipartite graphs with chromatic number at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math> are weakly <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${K}_{r+1}$</annotation>\n </semantics></math>-Turán-stable. Partly answering a question of Morrison, Nir, Norin, Rzażewski, and Wesolek positively, we show that for every graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math>, if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math> is large enough, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${K}_{r+1}$</annotation>\n </semantics></math>-Turán-stable. Finally, we prove that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is bipartite, then it is weakly <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${C}_{2k+1}$</annotation>\n </semantics></math>-Turán-stable for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> large enough.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"681-692"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability from graph symmetrization arguments in generalized Turán problems\",\"authors\":\"Dániel Gerbner,&nbsp;Hilal Hama Karim\",\"doi\":\"10.1002/jgt.23151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n <annotation> $F$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>ex</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>H</mi>\\n \\n <mo>,</mo>\\n \\n <mi>F</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{ex}(n,H,F)$</annotation>\\n </semantics></math> denotes the largest number of copies of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n <annotation> $F$</annotation>\\n </semantics></math>-free <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-vertex graphs. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>χ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>&lt;</mo>\\n \\n <mi>χ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>F</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>r</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\chi (H)\\\\lt \\\\chi (F)=r+1$</annotation>\\n </semantics></math>. We say that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> is <i>F-Turán-stable</i> if the following holds. For any <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ε</mi>\\n \\n <mo>&gt;</mo>\\n \\n <mn>0</mn>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\varepsilon \\\\gt 0$</annotation>\\n </semantics></math> there exists <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>δ</mi>\\n \\n <mo>&gt;</mo>\\n \\n <mn>0</mn>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\delta \\\\gt 0$</annotation>\\n </semantics></math> such that if an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-vertex <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n <annotation> $F$</annotation>\\n </semantics></math>-free graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> contains at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>ex</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>H</mi>\\n \\n <mo>,</mo>\\n \\n <mi>F</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>−</mo>\\n \\n <mi>δ</mi>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{ex}(n,H,F)-\\\\delta {n}^{| V(H)| }$</annotation>\\n </semantics></math> copies of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math>, then the edit distance of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> and the <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-partite Turán graph is at most <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ε</mi>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\varepsilon {n}^{2}$</annotation>\\n </semantics></math>. We say that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> is <i>weakly F-Turán-stable</i> if the same holds with the Turán graph replaced by any complete <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-partite graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math>. It is known that such stability implies exact results in several cases. We show that complete multipartite graphs with chromatic number at most <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math> are weakly <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${K}_{r+1}$</annotation>\\n </semantics></math>-Turán-stable. Partly answering a question of Morrison, Nir, Norin, Rzażewski, and Wesolek positively, we show that for every graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math>, if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math> is large enough, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${K}_{r+1}$</annotation>\\n </semantics></math>-Turán-stable. Finally, we prove that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> is bipartite, then it is weakly <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${C}_{2k+1}$</annotation>\\n </semantics></math>-Turán-stable for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> large enough.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 4\",\"pages\":\"681-692\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23151\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23151","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定图 和 ,表示无顶点图中 的最大副本数。如果下面的条件成立,我们就说它是 F-Turán-stable 的。对于任意存在这样的图,如果一个无顶点图至少包含 、 的副本,那么 和 的编辑距离最多为 。如果将图兰图替换为任何完整的-部分图后同样成立,我们就说图兰图具有弱F-图兰稳定性。众所周知,这种稳定性意味着几种情况下的精确结果。我们证明了色度数最多的完整多方图是弱-图兰稳定的。我们部分正面回答了莫里森、尼尔、诺林、拉扎耶夫斯基和韦索莱克的一个问题,证明了对于每个图 ,如果足够大,则是-图兰稳定的。最后,我们证明,如果是双向图,那么对于足够大的图,它是弱-图兰稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability from graph symmetrization arguments in generalized Turán problems

Given graphs H $H$ and F $F$ , ex ( n , H , F ) $\text{ex}(n,H,F)$ denotes the largest number of copies of H $H$ in F $F$ -free n $n$ -vertex graphs. Let χ ( H ) < χ ( F ) = r + 1 $\chi (H)\lt \chi (F)=r+1$ . We say that H $H$ is F-Turán-stable if the following holds. For any ε > 0 $\varepsilon \gt 0$ there exists δ > 0 $\delta \gt 0$ such that if an n $n$ -vertex F $F$ -free graph G $G$ contains at least ex ( n , H , F ) δ n V ( H ) $\text{ex}(n,H,F)-\delta {n}^{| V(H)| }$ copies of H $H$ , then the edit distance of G $G$ and the r $r$ -partite Turán graph is at most ε n 2 $\varepsilon {n}^{2}$ . We say that H $H$ is weakly F-Turán-stable if the same holds with the Turán graph replaced by any complete r $r$ -partite graph T $T$ . It is known that such stability implies exact results in several cases. We show that complete multipartite graphs with chromatic number at most r $r$ are weakly K r + 1 ${K}_{r+1}$ -Turán-stable. Partly answering a question of Morrison, Nir, Norin, Rzażewski, and Wesolek positively, we show that for every graph H $H$ , if r $r$ is large enough, then H $H$ is K r + 1 ${K}_{r+1}$ -Turán-stable. Finally, we prove that if H $H$ is bipartite, then it is weakly C 2 k + 1 ${C}_{2k+1}$ -Turán-stable for k $k$ large enough.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信