{"title":"Polynomial bounds for chromatic number VIII. Excluding a path and a complete multipartite graph","authors":"Tung Nguyen, Alex Scott, Paul Seymour","doi":"10.1002/jgt.23129","DOIUrl":null,"url":null,"abstract":"<p>We prove that for every path <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math>, and every integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math>, there is a polynomial <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>f</mi>\n </mrow>\n </mrow>\n <annotation> $f$</annotation>\n </semantics></math> such that every graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with chromatic number greater than <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>t</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $f(t)$</annotation>\n </semantics></math> either contains <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> as an induced subgraph, or contains as a subgraph the complete <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math>-partite graph with parts of cardinality <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>. For <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $t=1$</annotation>\n </semantics></math> and general <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math> this is a classical theorem of Gyárfás, and for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> $d=2$</annotation>\n </semantics></math> and general <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math> this is a theorem of Bonamy et al.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23129","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that for every path , and every integer , there is a polynomial such that every graph with chromatic number greater than either contains as an induced subgraph, or contains as a subgraph the complete -partite graph with parts of cardinality . For and general this is a classical theorem of Gyárfás, and for and general this is a theorem of Bonamy et al.