Polynomial bounds for chromatic number VIII. Excluding a path and a complete multipartite graph

Pub Date : 2024-06-24 DOI:10.1002/jgt.23129
Tung Nguyen, Alex Scott, Paul Seymour
{"title":"Polynomial bounds for chromatic number VIII. Excluding a path and a complete multipartite graph","authors":"Tung Nguyen,&nbsp;Alex Scott,&nbsp;Paul Seymour","doi":"10.1002/jgt.23129","DOIUrl":null,"url":null,"abstract":"<p>We prove that for every path <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math>, and every integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math>, there is a polynomial <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>f</mi>\n </mrow>\n </mrow>\n <annotation> $f$</annotation>\n </semantics></math> such that every graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with chromatic number greater than <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>t</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $f(t)$</annotation>\n </semantics></math> either contains <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> as an induced subgraph, or contains as a subgraph the complete <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math>-partite graph with parts of cardinality <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>. For <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $t=1$</annotation>\n </semantics></math> and general <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math> this is a classical theorem of Gyárfás, and for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> $d=2$</annotation>\n </semantics></math> and general <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math> this is a theorem of Bonamy et al.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23129","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that for every path H $H$ , and every integer d $d$ , there is a polynomial f $f$ such that every graph G $G$ with chromatic number greater than f ( t ) $f(t)$ either contains H $H$ as an induced subgraph, or contains as a subgraph the complete d $d$ -partite graph with parts of cardinality t $t$ . For t = 1 $t=1$ and general d $d$ this is a classical theorem of Gyárfás, and for d = 2 $d=2$ and general t $t$ this is a theorem of Bonamy et al.

分享
查看原文
色度数的多项式边界 VIII.排除路径和完整多方图
我们证明,对于每一条路径 ,以及每一个整数 ,都存在一个多项式,使得每一个色度数大于 的图要么包含一个诱导子图,要么包含一个子图,即具有心率为 的部分的完整-部分图。对于 和 一般,这是 Gyárfás 的经典定理;对于 和 一般,这是 Bonamy 等人的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信