{"title":"Multicolor Turán numbers II: A generalization of the Ruzsa–Szemerédi theorem and new results on cliques and odd cycles","authors":"Benedek Kovács, Zoltán Lóránt Nagy","doi":"10.1002/jgt.23147","DOIUrl":null,"url":null,"abstract":"<p>In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mtext>ex</mtext>\n \n <mi>F</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>G</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\text{ex}}_{F}(n,G)$</annotation>\n </semantics></math> denote the maximum number of edge-disjoint copies of a fixed simple graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> that can be placed on an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex ground set without forming a subgraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> whose edges are from different <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math>-copies. The case when both <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> are arbitrary cliques by applying a number theoretic result due to Erdős, Frankl, and Rödl. This extension in turn decides the order of magnitude for a large family of graph pairs, which will be subquadratic, but almost quadratic. Since the linear <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-uniform hypergraph Turán problems to determine <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mtext>ex</mtext>\n \n <mi>r</mi>\n \n <mrow>\n <mi>l</mi>\n \n <mi>i</mi>\n \n <mi>n</mi>\n </mrow>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>G</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\text{ex}}_{r}^{lin}(n,G)$</annotation>\n </semantics></math> form a class of the multicolor Turán problem, following the identity <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mtext>ex</mtext>\n \n <mi>r</mi>\n \n <mrow>\n <mi>l</mi>\n \n <mi>i</mi>\n \n <mi>n</mi>\n </mrow>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>G</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <msub>\n <mtext>ex</mtext>\n \n <msub>\n <mi>K</mi>\n \n <mi>r</mi>\n </msub>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>G</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\text{ex}}_{r}^{lin}(n,G)={\\text{ex}}_{{K}_{r}}(n,G)$</annotation>\n </semantics></math>, our results determine the linear hypergraph Turán numbers of every graph of girth 3 and for every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math> up to a subpolynomial factor. Furthermore, when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a triangle, we settle the case <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>5</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> $F={C}_{5}$</annotation>\n </semantics></math> and give bounds for the cases <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> $F={C}_{2k+1}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\ge 3$</annotation>\n </semantics></math> as well.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let denote the maximum number of edge-disjoint copies of a fixed simple graph that can be placed on an -vertex ground set without forming a subgraph whose edges are from different -copies. The case when both and are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when and are arbitrary cliques by applying a number theoretic result due to Erdős, Frankl, and Rödl. This extension in turn decides the order of magnitude for a large family of graph pairs, which will be subquadratic, but almost quadratic. Since the linear -uniform hypergraph Turán problems to determine form a class of the multicolor Turán problem, following the identity , our results determine the linear hypergraph Turán numbers of every graph of girth 3 and for every up to a subpolynomial factor. Furthermore, when is a triangle, we settle the case and give bounds for the cases , as well.