{"title":"Growth rates of the bipartite Erdős–Gyárfás function","authors":"Xihe Li, Hajo Broersma, Ligong Wang","doi":"10.1002/jgt.23149","DOIUrl":null,"url":null,"abstract":"<p>Given two graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $G,H$</annotation>\n </semantics></math> and a positive integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>q</mi>\n </mrow>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>, an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>H</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $(H,q)$</annotation>\n </semantics></math>-coloring of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is an edge-coloring of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that every copy of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> receives at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>q</mi>\n </mrow>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math> distinct colors. The bipartite Erdős–Gyárfás function <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $r({K}_{n,n},{K}_{s,t},q)$</annotation>\n </semantics></math> is defined to be the minimum number of colors needed for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${K}_{n,n}$</annotation>\n </semantics></math> to have a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $({K}_{s,t},q)$</annotation>\n </semantics></math>-coloring. For balanced complete bipartite graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>p</mi>\n \n <mo>,</mo>\n \n <mi>p</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${K}_{p,p}$</annotation>\n </semantics></math>, the function <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>p</mi>\n \n <mo>,</mo>\n \n <mi>p</mi>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $r({K}_{n,n},{K}_{p,p},q)$</annotation>\n </semantics></math> was studied systematically in Axenovich et al. In this paper, we study the asymptotic behavior of this function for complete bipartite graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${K}_{s,t}$</annotation>\n </semantics></math> that are not necessarily balanced. Our main results deal with thresholds and lower and upper bounds for the growth rate of this function, in particular for (sub)linear and (sub)quadratic growth. We also obtain new lower bounds for the balanced bipartite case, and improve several results given by Axenovich, Füredi and Mubayi. Our proof techniques are based on an extension to bipartite graphs of the recently developed Color Energy Method by Pohoata and Sheffer and its refinements, and a generalization of an old result due to Corrádi.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23149","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given two graphs and a positive integer , an -coloring of is an edge-coloring of such that every copy of in receives at least distinct colors. The bipartite Erdős–Gyárfás function is defined to be the minimum number of colors needed for to have a -coloring. For balanced complete bipartite graphs , the function was studied systematically in Axenovich et al. In this paper, we study the asymptotic behavior of this function for complete bipartite graphs that are not necessarily balanced. Our main results deal with thresholds and lower and upper bounds for the growth rate of this function, in particular for (sub)linear and (sub)quadratic growth. We also obtain new lower bounds for the balanced bipartite case, and improve several results given by Axenovich, Füredi and Mubayi. Our proof techniques are based on an extension to bipartite graphs of the recently developed Color Energy Method by Pohoata and Sheffer and its refinements, and a generalization of an old result due to Corrádi.