所有凸循环长度相同的规则局部立方体的特征描述

IF 0.9 3区 数学 Q2 MATHEMATICS
Yan-Ting Xie, Yong-De Feng, Shou-Jun Xu
{"title":"所有凸循环长度相同的规则局部立方体的特征描述","authors":"Yan-Ting Xie,&nbsp;Yong-De Feng,&nbsp;Shou-Jun Xu","doi":"10.1002/jgt.23126","DOIUrl":null,"url":null,"abstract":"<p>Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $2n$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>⩾</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> $n\\geqslant 4$</annotation>\n </semantics></math>) if and only if all its convex cycles are 4-cycles (resp., 6-cycles, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $2n$</annotation>\n </semantics></math>-cycles). In particular, the partial cubes whose all convex cycles are 4-cycles are equivalent to almost-median graphs. Therefore, we conclude that regular almost-median graphs are exactly hypercubes, which generalizes the result by Mulder—regular median graphs are hypercubes.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"550-558"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of regular partial cubes whose all convex cycles have the same lengths\",\"authors\":\"Yan-Ting Xie,&nbsp;Yong-De Feng,&nbsp;Shou-Jun Xu\",\"doi\":\"10.1002/jgt.23126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $2n$</annotation>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>⩾</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n </mrow>\\n <annotation> $n\\\\geqslant 4$</annotation>\\n </semantics></math>) if and only if all its convex cycles are 4-cycles (resp., 6-cycles, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $2n$</annotation>\\n </semantics></math>-cycles). In particular, the partial cubes whose all convex cycles are 4-cycles are equivalent to almost-median graphs. Therefore, we conclude that regular almost-median graphs are exactly hypercubes, which generalizes the result by Mulder—regular median graphs are hypercubes.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 3\",\"pages\":\"550-558\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23126\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23126","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

部分立方体是可以等距嵌入超立方体的图形。凸周期在部分立方体的研究中发挥着重要作用。本文证明,当且仅当一个规则部分立方体的所有凸循环都是 4 循环(或 6 循环、-循环)时,它是一个超立方体(或称双奇图,长度为 的偶数循环)。特别是,所有凸循环都是 4 循环的部分立方图等价于近中值图。因此,我们得出结论:规则的近中值图恰好是超立方体,这推广了穆德的结果--规则的中值图是超立方体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterization of regular partial cubes whose all convex cycles have the same lengths

Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length 2 n $2n$ where n 4 $n\geqslant 4$ ) if and only if all its convex cycles are 4-cycles (resp., 6-cycles, 2 n $2n$ -cycles). In particular, the partial cubes whose all convex cycles are 4-cycles are equivalent to almost-median graphs. Therefore, we conclude that regular almost-median graphs are exactly hypercubes, which generalizes the result by Mulder—regular median graphs are hypercubes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信