Cliques in squares of graphs with maximum average degree less than 4

Pub Date : 2024-07-02 DOI:10.1002/jgt.23125
Daniel W. Cranston, Gexin Yu
{"title":"Cliques in squares of graphs with maximum average degree less than 4","authors":"Daniel W. Cranston,&nbsp;Gexin Yu","doi":"10.1002/jgt.23125","DOIUrl":null,"url":null,"abstract":"<p>Hocquard, Kim, and Pierron constructed, for every even integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> $D\\ge 2$</annotation>\n </semantics></math>, a 2-degenerate graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>D</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${G}_{D}$</annotation>\n </semantics></math> with maximum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>G</mi>\n \n <mi>D</mi>\n \n <mn>2</mn>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}_{D}^{2})=\\frac{5}{2}D$</annotation>\n </semantics></math>. We prove for (a) all 2-degenerate graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and (b) all graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>mad</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>&lt;</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> $\\text{mad}(G)\\lt 4$</annotation>\n </semantics></math>, upper bounds on the clique number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}^{2})$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${G}^{2}$</annotation>\n </semantics></math> that match the lower bound given by this construction, up to small additive constants. We show that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is 2-degenerate with maximum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>D</mi>\n \n <mo>+</mo>\n \n <mn>72</mn>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}^{2})\\le \\frac{5}{2}D+72$</annotation>\n </semantics></math> (with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>D</mi>\n \n <mo>+</mo>\n \n <mn>60</mn>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}^{2})\\le \\frac{5}{2}D+60$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is sufficiently large). And if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>mad</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>&lt;</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> $\\text{mad}(G)\\lt 4$</annotation>\n </semantics></math> and maximum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>D</mi>\n \n <mo>+</mo>\n \n <mn>532</mn>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}^{2})\\le \\frac{5}{2}D+532$</annotation>\n </semantics></math>. Thus, the construction of Hocquard et al. is essentially the best possible. Our proofs introduce a “token passing” technique to derive crucial information about nonadjacencies in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of vertices that are adjacent in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${G}^{2}$</annotation>\n </semantics></math>. This is a powerful technique for working with such graphs that has not previously appeared in the literature.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23125","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hocquard, Kim, and Pierron constructed, for every even integer D 2 $D\ge 2$ , a 2-degenerate graph G D ${G}_{D}$ with maximum degree D $D$ such that ω ( G D 2 ) = 5 2 D $\omega ({G}_{D}^{2})=\frac{5}{2}D$ . We prove for (a) all 2-degenerate graphs G $G$ and (b) all graphs G $G$ with mad ( G ) < 4 $\text{mad}(G)\lt 4$ , upper bounds on the clique number ω ( G 2 ) $\omega ({G}^{2})$ of G 2 ${G}^{2}$ that match the lower bound given by this construction, up to small additive constants. We show that if G $G$ is 2-degenerate with maximum degree D $D$ , then ω ( G 2 ) 5 2 D + 72 $\omega ({G}^{2})\le \frac{5}{2}D+72$ (with ω ( G 2 ) 5 2 D + 60 $\omega ({G}^{2})\le \frac{5}{2}D+60$ when D $D$ is sufficiently large). And if G $G$ has mad ( G ) < 4 $\text{mad}(G)\lt 4$ and maximum degree D $D$ , then ω ( G 2 ) 5 2 D + 532 $\omega ({G}^{2})\le \frac{5}{2}D+532$ . Thus, the construction of Hocquard et al. is essentially the best possible. Our proofs introduce a “token passing” technique to derive crucial information about nonadjacencies in G $G$ of vertices that are adjacent in G 2 ${G}^{2}$ . This is a powerful technique for working with such graphs that has not previously appeared in the literature.

Abstract Image

分享
查看原文
最大平均度数小于 4 的图形正方形中的小群
Hocquard、Kim 和 Pierron 为每一个偶整数 ,构造了一个具有最大度的 2 退化图,使得 。我们证明了 (a) 所有 2-enerate图和 (b) 所有具有 , 的图的小群数的上界,这些小群数的上界与该构造给出的下界相匹配,且不超过小的加常数。我们证明,如果是最大度为 , 的 2畸变图,那么(当度足够大时),如果是最大度为 , 的 2畸变图,那么(当度足够大时)。而如果最大度为 ,那么 。因此,霍夸尔等人的构造本质上是最好的。我们的证明引入了一种 "令牌传递 "技术,以推导出...中相邻顶点的非相邻性的关键信息。这是一种处理此类图的强大技术,以前从未在文献中出现过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信