Cliques in squares of graphs with maximum average degree less than 4

IF 0.9 3区 数学 Q2 MATHEMATICS
Daniel W. Cranston, Gexin Yu
{"title":"Cliques in squares of graphs with maximum average degree less than 4","authors":"Daniel W. Cranston,&nbsp;Gexin Yu","doi":"10.1002/jgt.23125","DOIUrl":null,"url":null,"abstract":"<p>Hocquard, Kim, and Pierron constructed, for every even integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> $D\\ge 2$</annotation>\n </semantics></math>, a 2-degenerate graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>D</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${G}_{D}$</annotation>\n </semantics></math> with maximum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>G</mi>\n \n <mi>D</mi>\n \n <mn>2</mn>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}_{D}^{2})=\\frac{5}{2}D$</annotation>\n </semantics></math>. We prove for (a) all 2-degenerate graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and (b) all graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>mad</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>&lt;</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> $\\text{mad}(G)\\lt 4$</annotation>\n </semantics></math>, upper bounds on the clique number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}^{2})$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${G}^{2}$</annotation>\n </semantics></math> that match the lower bound given by this construction, up to small additive constants. We show that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is 2-degenerate with maximum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>D</mi>\n \n <mo>+</mo>\n \n <mn>72</mn>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}^{2})\\le \\frac{5}{2}D+72$</annotation>\n </semantics></math> (with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>D</mi>\n \n <mo>+</mo>\n \n <mn>60</mn>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}^{2})\\le \\frac{5}{2}D+60$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is sufficiently large). And if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>mad</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>&lt;</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> $\\text{mad}(G)\\lt 4$</annotation>\n </semantics></math> and maximum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>D</mi>\n \n <mo>+</mo>\n \n <mn>532</mn>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}^{2})\\le \\frac{5}{2}D+532$</annotation>\n </semantics></math>. Thus, the construction of Hocquard et al. is essentially the best possible. Our proofs introduce a “token passing” technique to derive crucial information about nonadjacencies in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of vertices that are adjacent in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${G}^{2}$</annotation>\n </semantics></math>. This is a powerful technique for working with such graphs that has not previously appeared in the literature.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"559-577"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23125","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23125","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Hocquard, Kim, and Pierron constructed, for every even integer D 2 $D\ge 2$ , a 2-degenerate graph G D ${G}_{D}$ with maximum degree D $D$ such that ω ( G D 2 ) = 5 2 D $\omega ({G}_{D}^{2})=\frac{5}{2}D$ . We prove for (a) all 2-degenerate graphs G $G$ and (b) all graphs G $G$ with mad ( G ) < 4 $\text{mad}(G)\lt 4$ , upper bounds on the clique number ω ( G 2 ) $\omega ({G}^{2})$ of G 2 ${G}^{2}$ that match the lower bound given by this construction, up to small additive constants. We show that if G $G$ is 2-degenerate with maximum degree D $D$ , then ω ( G 2 ) 5 2 D + 72 $\omega ({G}^{2})\le \frac{5}{2}D+72$ (with ω ( G 2 ) 5 2 D + 60 $\omega ({G}^{2})\le \frac{5}{2}D+60$ when D $D$ is sufficiently large). And if G $G$ has mad ( G ) < 4 $\text{mad}(G)\lt 4$ and maximum degree D $D$ , then ω ( G 2 ) 5 2 D + 532 $\omega ({G}^{2})\le \frac{5}{2}D+532$ . Thus, the construction of Hocquard et al. is essentially the best possible. Our proofs introduce a “token passing” technique to derive crucial information about nonadjacencies in G $G$ of vertices that are adjacent in G 2 ${G}^{2}$ . This is a powerful technique for working with such graphs that has not previously appeared in the literature.

Abstract Image

最大平均度数小于 4 的图形正方形中的小群
Hocquard、Kim 和 Pierron 为每一个偶整数 ,构造了一个具有最大度的 2 退化图,使得 。我们证明了 (a) 所有 2-enerate图和 (b) 所有具有 , 的图的小群数的上界,这些小群数的上界与该构造给出的下界相匹配,且不超过小的加常数。我们证明,如果是最大度为 , 的 2畸变图,那么(当度足够大时),如果是最大度为 , 的 2畸变图,那么(当度足够大时)。而如果最大度为 ,那么 。因此,霍夸尔等人的构造本质上是最好的。我们的证明引入了一种 "令牌传递 "技术,以推导出...中相邻顶点的非相邻性的关键信息。这是一种处理此类图的强大技术,以前从未在文献中出现过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信