{"title":"Thin edges in cubic braces","authors":"Xiaoling He, Fuliang Lu","doi":"10.1002/jgt.23150","DOIUrl":null,"url":null,"abstract":"<p>For a vertex set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> in a graph, the <i>edge cut</i> <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math> is the set of edges with exactly one end vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math>. An edge cut <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math> is <i>tight</i> if every perfect matching of the graph contains exactly one edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math>. A matching covered bipartite graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a <i>brace</i> if, for every tight cut <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>|</mo>\n \n <mi>X</mi>\n \n <mo>|</mo>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $|X|=1$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>|</mo>\n \n <mover>\n <mi>X</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mo>|</mo>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $|\\bar{X}|=1$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>X</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mo>=</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⧹</mo>\n \n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $\\bar{X}=V(G)\\setminus X$</annotation>\n </semantics></math>. Braces play an important role in Lovász's tight cut decomposition of matching covered graphs. The <i>bicontraction</i> of a vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math> of degree two in a graph, with precisely two neighbours <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${v}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${v}_{2}$</annotation>\n </semantics></math>, consists of shrinking the set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>v</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\{{v}_{1},v,{v}_{2}\\}$</annotation>\n </semantics></math> to a single vertex. The <i>retract</i> of a matching covered graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is the graph obtained from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> by repeatedly the bicontractions of vertices of degree two. An edge <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>e</mi>\n </mrow>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> of a brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with at least six vertices is <i>thin</i> if the retract of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow>\n </mrow>\n <annotation> $G-e$</annotation>\n </semantics></math> is a brace. McCuaig showed that every brace of order at least six has a thin edge. In a brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order six or more, Carvalho, Lucchesi and Murty proved that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has two thin edges, and conjectured that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> contains two nonadjacent thin edges. Further, they made a stronger conjecture: There exists a positive constant <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n <annotation> $c$</annotation>\n </semantics></math> such that every brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n \n <mo>|</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation> $c|V(G)|$</annotation>\n </semantics></math> thin edges. By showing that, in every cubic brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order at least six, there exists a matching <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>M</mi>\n </mrow>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> of size at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>|</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n \n <mo>∕</mo>\n \n <mn>10</mn>\n </mrow>\n </mrow>\n <annotation> $|V(G)|\\unicode{x02215}10$</annotation>\n </semantics></math> such that every edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>M</mi>\n </mrow>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> is thin, we prove that the above two conjectures hold for cubic braces.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"642-675"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23150","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a vertex set in a graph, the edge cut is the set of edges with exactly one end vertex in . An edge cut is tight if every perfect matching of the graph contains exactly one edge in . A matching covered bipartite graph is a brace if, for every tight cut , or , where . Braces play an important role in Lovász's tight cut decomposition of matching covered graphs. The bicontraction of a vertex of degree two in a graph, with precisely two neighbours and , consists of shrinking the set to a single vertex. The retract of a matching covered graph is the graph obtained from by repeatedly the bicontractions of vertices of degree two. An edge of a brace with at least six vertices is thin if the retract of is a brace. McCuaig showed that every brace of order at least six has a thin edge. In a brace of order six or more, Carvalho, Lucchesi and Murty proved that has two thin edges, and conjectured that contains two nonadjacent thin edges. Further, they made a stronger conjecture: There exists a positive constant such that every brace has thin edges. By showing that, in every cubic brace of order at least six, there exists a matching of size at least such that every edge in is thin, we prove that the above two conjectures hold for cubic braces.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .