Thin edges in cubic braces

IF 0.9 3区 数学 Q2 MATHEMATICS
Xiaoling He, Fuliang Lu
{"title":"Thin edges in cubic braces","authors":"Xiaoling He,&nbsp;Fuliang Lu","doi":"10.1002/jgt.23150","DOIUrl":null,"url":null,"abstract":"<p>For a vertex set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> in a graph, the <i>edge cut</i> <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math> is the set of edges with exactly one end vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math>. An edge cut <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math> is <i>tight</i> if every perfect matching of the graph contains exactly one edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math>. A matching covered bipartite graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a <i>brace</i> if, for every tight cut <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>|</mo>\n \n <mi>X</mi>\n \n <mo>|</mo>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $|X|=1$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>|</mo>\n \n <mover>\n <mi>X</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mo>|</mo>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $|\\bar{X}|=1$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>X</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mo>=</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⧹</mo>\n \n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $\\bar{X}=V(G)\\setminus X$</annotation>\n </semantics></math>. Braces play an important role in Lovász's tight cut decomposition of matching covered graphs. The <i>bicontraction</i> of a vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math> of degree two in a graph, with precisely two neighbours <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${v}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${v}_{2}$</annotation>\n </semantics></math>, consists of shrinking the set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>v</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\{{v}_{1},v,{v}_{2}\\}$</annotation>\n </semantics></math> to a single vertex. The <i>retract</i> of a matching covered graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is the graph obtained from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> by repeatedly the bicontractions of vertices of degree two. An edge <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>e</mi>\n </mrow>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> of a brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with at least six vertices is <i>thin</i> if the retract of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow>\n </mrow>\n <annotation> $G-e$</annotation>\n </semantics></math> is a brace. McCuaig showed that every brace of order at least six has a thin edge. In a brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order six or more, Carvalho, Lucchesi and Murty proved that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has two thin edges, and conjectured that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> contains two nonadjacent thin edges. Further, they made a stronger conjecture: There exists a positive constant <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n <annotation> $c$</annotation>\n </semantics></math> such that every brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n \n <mo>|</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation> $c|V(G)|$</annotation>\n </semantics></math> thin edges. By showing that, in every cubic brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order at least six, there exists a matching <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>M</mi>\n </mrow>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> of size at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>|</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n \n <mo>∕</mo>\n \n <mn>10</mn>\n </mrow>\n </mrow>\n <annotation> $|V(G)|\\unicode{x02215}10$</annotation>\n </semantics></math> such that every edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>M</mi>\n </mrow>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> is thin, we prove that the above two conjectures hold for cubic braces.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"642-675"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23150","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a vertex set X $X$ in a graph, the edge cut ( X ) $\partial (X)$ is the set of edges with exactly one end vertex in X $X$ . An edge cut ( X ) $\partial (X)$ is tight if every perfect matching of the graph contains exactly one edge in ( X ) $\partial (X)$ . A matching covered bipartite graph G $G$ is a brace if, for every tight cut ( X ) $\partial (X)$ , | X | = 1 $|X|=1$ or | X ¯ | = 1 $|\bar{X}|=1$ , where X ¯ = V ( G ) X $\bar{X}=V(G)\setminus X$ . Braces play an important role in Lovász's tight cut decomposition of matching covered graphs. The bicontraction of a vertex v $v$ of degree two in a graph, with precisely two neighbours v 1 ${v}_{1}$ and v 2 ${v}_{2}$ , consists of shrinking the set { v 1 , v , v 2 } $\{{v}_{1},v,{v}_{2}\}$ to a single vertex. The retract of a matching covered graph G $G$  is the graph obtained from G $G$ by repeatedly the bicontractions of vertices of degree two. An edge e $e$ of a brace G $G$ with at least six vertices is thin if the retract of G e $G-e$ is a brace. McCuaig showed that every brace of order at least six has a thin edge. In a brace G $G$ of order six or more, Carvalho, Lucchesi and Murty proved that G $G$ has two thin edges, and conjectured that G $G$ contains two nonadjacent thin edges. Further, they made a stronger conjecture: There exists a positive constant c $c$ such that every brace G $G$ has c | V ( G ) | $c|V(G)|$ thin edges. By showing that, in every cubic brace G $G$ of order at least six, there exists a matching M $M$ of size at least | V ( G ) | 10 $|V(G)|\unicode{x02215}10$ such that every edge in M $M$ is thin, we prove that the above two conjectures hold for cubic braces.

立方括号中的细边
对于图中的顶点集,边切是指在 ...中恰好有一个末端顶点的边的集合。如果图中的每个完美匹配都恰好包含一条边,则边切是紧密的。如果对于每个紧密切分 , 或 , 其中 , 一个匹配覆盖的二叉图是一个括号。在洛瓦兹对匹配覆盖图的紧切分解中,括号起着重要作用。在一个图中,度数为 2 的顶点恰好有两个相邻的 和 ,对该顶点的双收缩包括将该顶点集收缩为单个顶点。匹配覆盖图的缩减图是重复二度顶点的二缩减后得到的图。如果 的缩回是一个括号,那么至少有六个顶点的括号边就是细边。麦库艾格证明了每个至少有六个顶点的括号都有一条细边。卡瓦略、卢切西和穆尔蒂证明了阶数为六或更多的括号有两条细边,并猜想其中包含两条不相邻的细边。此外,他们还提出了一个更强的猜想:存在一个正常量,使得每一个长方体都有细边。通过证明在每一个阶数至少为六的立方括号中,存在一个大小至少为的匹配,使得其中的每一条边都是薄边,我们证明了上述两个猜想对于立方括号是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信