{"title":"A characterization of regular partial cubes whose all convex cycles have the same lengths","authors":"Yan-Ting Xie, Yong-De Feng, Shou-Jun Xu","doi":"10.1002/jgt.23126","DOIUrl":null,"url":null,"abstract":"<p>Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $2n$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>⩾</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> $n\\geqslant 4$</annotation>\n </semantics></math>) if and only if all its convex cycles are 4-cycles (resp., 6-cycles, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $2n$</annotation>\n </semantics></math>-cycles). In particular, the partial cubes whose all convex cycles are 4-cycles are equivalent to almost-median graphs. Therefore, we conclude that regular almost-median graphs are exactly hypercubes, which generalizes the result by Mulder—regular median graphs are hypercubes.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length where ) if and only if all its convex cycles are 4-cycles (resp., 6-cycles, -cycles). In particular, the partial cubes whose all convex cycles are 4-cycles are equivalent to almost-median graphs. Therefore, we conclude that regular almost-median graphs are exactly hypercubes, which generalizes the result by Mulder—regular median graphs are hypercubes.