{"title":"Stability from graph symmetrization arguments in generalized Turán problems","authors":"Dániel Gerbner, Hilal Hama Karim","doi":"10.1002/jgt.23151","DOIUrl":null,"url":null,"abstract":"<p>Given graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\text{ex}(n,H,F)$</annotation>\n </semantics></math> denotes the largest number of copies of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math>-free <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex graphs. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo><</mo>\n \n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>r</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $\\chi (H)\\lt \\chi (F)=r+1$</annotation>\n </semantics></math>. We say that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is <i>F-Turán-stable</i> if the following holds. For any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ε</mi>\n \n <mo>></mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n <annotation> $\\varepsilon \\gt 0$</annotation>\n </semantics></math> there exists <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mo>></mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n <annotation> $\\delta \\gt 0$</annotation>\n </semantics></math> such that if an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math>-free graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> contains at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>−</mo>\n \n <mi>δ</mi>\n \n <msup>\n <mi>n</mi>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n <annotation> $\\text{ex}(n,H,F)-\\delta {n}^{| V(H)| }$</annotation>\n </semantics></math> copies of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math>, then the edit distance of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-partite Turán graph is at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ε</mi>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n <annotation> $\\varepsilon {n}^{2}$</annotation>\n </semantics></math>. We say that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is <i>weakly F-Turán-stable</i> if the same holds with the Turán graph replaced by any complete <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-partite graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>T</mi>\n </mrow>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math>. It is known that such stability implies exact results in several cases. We show that complete multipartite graphs with chromatic number at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math> are weakly <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${K}_{r+1}$</annotation>\n </semantics></math>-Turán-stable. Partly answering a question of Morrison, Nir, Norin, Rzażewski, and Wesolek positively, we show that for every graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math>, if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math> is large enough, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${K}_{r+1}$</annotation>\n </semantics></math>-Turán-stable. Finally, we prove that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is bipartite, then it is weakly <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${C}_{2k+1}$</annotation>\n </semantics></math>-Turán-stable for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> large enough.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"681-692"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23151","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given graphs and , denotes the largest number of copies of in -free -vertex graphs. Let . We say that is F-Turán-stable if the following holds. For any there exists such that if an -vertex -free graph contains at least copies of , then the edit distance of and the -partite Turán graph is at most . We say that is weakly F-Turán-stable if the same holds with the Turán graph replaced by any complete -partite graph . It is known that such stability implies exact results in several cases. We show that complete multipartite graphs with chromatic number at most are weakly -Turán-stable. Partly answering a question of Morrison, Nir, Norin, Rzażewski, and Wesolek positively, we show that for every graph , if is large enough, then is -Turán-stable. Finally, we prove that if is bipartite, then it is weakly -Turán-stable for large enough.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .