最小次给定图中连续奇环的一个强化

IF 1 3区 数学 Q2 MATHEMATICS
Hao Lin, Guanghui Wang, Wenling Zhou
{"title":"最小次给定图中连续奇环的一个强化","authors":"Hao Lin,&nbsp;Guanghui Wang,&nbsp;Wenling Zhou","doi":"10.1002/jgt.23281","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Liu and Ma [<i>J. Combin. Theory Ser. B, 2018</i>] conjectured that every 2-connected non-bipartite graph with minimum degree at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math> contains <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>⌈</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>/</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> cycles with consecutive odd lengths. In particular, they showed that this conjecture holds when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> is even. In this paper, we confirm this conjecture for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow>\n </mrow>\n </semantics></math>. Moreover, we also improve some previous results about cycles of consecutive lengths.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"431-436"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Strengthening on Consecutive Odd Cycles in Graphs of Given Minimum Degree\",\"authors\":\"Hao Lin,&nbsp;Guanghui Wang,&nbsp;Wenling Zhou\",\"doi\":\"10.1002/jgt.23281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Liu and Ma [<i>J. Combin. Theory Ser. B, 2018</i>] conjectured that every 2-connected non-bipartite graph with minimum degree at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> contains <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>⌈</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>/</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mo>⌉</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> cycles with consecutive odd lengths. In particular, they showed that this conjecture holds when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is even. In this paper, we confirm this conjecture for any <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>N</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. Moreover, we also improve some previous results about cycles of consecutive lengths.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"110 4\",\"pages\":\"431-436\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23281\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23281","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

[J]。Combin。Ser的理论。B,[2018]推测每一个最小度数至少为k + 1的2连通非二部图都包含有K / 2个连续奇数长度的环。特别地,他们证明了当k是偶数时这个猜想成立。在本文中,我们对任意k∈N证实了这个猜想。此外,我们还改进了前人关于连续长度循环的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Strengthening on Consecutive Odd Cycles in Graphs of Given Minimum Degree

A Strengthening on Consecutive Odd Cycles in Graphs of Given Minimum Degree

Liu and Ma [J. Combin. Theory Ser. B, 2018] conjectured that every 2-connected non-bipartite graph with minimum degree at least k + 1 contains k / 2 cycles with consecutive odd lengths. In particular, they showed that this conjecture holds when k is even. In this paper, we confirm this conjecture for any k N . Moreover, we also improve some previous results about cycles of consecutive lengths.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信