Jinghua Deng, Jianfeng Hou, Xizhi Liu, Caihong Yang
{"title":"Tight Bounds for Rainbow Partial \n \n \n \n F\n \n \n -Tiling in Edge-Colored Complete Hypergraphs","authors":"Jinghua Deng, Jianfeng Hou, Xizhi Liu, Caihong Yang","doi":"10.1002/jgt.23282","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> and integers <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> satisfying <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>≤</mo>\n \n <mi>n</mi>\n \n <mo>/</mo>\n \n <mi>v</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ar</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> denote the minimum integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n </mrow>\n </mrow>\n </semantics></math> such that every edge-coloring of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mi>n</mi>\n \n <mi>r</mi>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math> using <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n </mrow>\n </mrow>\n </semantics></math> colors contains a rainbow copy of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> is the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graphs consisting of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> vertex-disjoint copies of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>. The case <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math> is the classical anti-Ramsey problem proposed by Erdős–Simonovits–Sós [1]. When <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> is a single edge, this becomes the rainbow matching problem introduced by Schiermeyer [2] and Özkahya–Young [3]. We conduct a systematic study of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ar</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> for the case when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> is much smaller than <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>/</mo>\n \n <msup>\n <mi>n</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>. Our first main result provides a reduction of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ar</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ar</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> is bounded and smooth, two properties satisfied by most previously studied hypergraphs. Complementing the first result, the second main result, which utilizes gaps between Turán numbers, determines <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ar</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> for relatively smaller <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math>. Together, these two results determine <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ar</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> for a large class of hypergraphs. Additionally, the latter result has the advantage of being applicable to hypergraphs with unknown Turán densities, such as the famous tetrahedron <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mn>4</mn>\n \n <mn>3</mn>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"457-467"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23282","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For an -graph and integers satisfying , let denote the minimum integer such that every edge-coloring of using colors contains a rainbow copy of , where is the -graphs consisting of vertex-disjoint copies of . The case is the classical anti-Ramsey problem proposed by Erdős–Simonovits–Sós [1]. When is a single edge, this becomes the rainbow matching problem introduced by Schiermeyer [2] and Özkahya–Young [3]. We conduct a systematic study of for the case when is much smaller than . Our first main result provides a reduction of to when is bounded and smooth, two properties satisfied by most previously studied hypergraphs. Complementing the first result, the second main result, which utilizes gaps between Turán numbers, determines for relatively smaller . Together, these two results determine for a large class of hypergraphs. Additionally, the latter result has the advantage of being applicable to hypergraphs with unknown Turán densities, such as the famous tetrahedron .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .