{"title":"On Endomorphism Universality of Sparse Graph Classes","authors":"Kolja Knauer, Gil Puig i Surroca","doi":"10.1002/jgt.23262","DOIUrl":"https://doi.org/10.1002/jgt.23262","url":null,"abstract":"<p>We show that every commutative idempotent monoid (a.k.a. lattice) is the endomorphism monoid of a subcubic graph. This solves a problem of Babai and Pultr and the degree bound is best-possible. On the other hand, we show that no class excluding a minor can have all commutative idempotent monoids among its endomorphism monoids. As a by-product, we prove that monoids can be represented by graphs of bounded expansion (reproving a result of Nešetřil and Ossona de Mendez) and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-cancellative monoids can be represented by graphs of bounded degree. Finally, we show that not all completely regular monoids can be represented by graphs excluding topological minor (strengthening a result of Babai and Pultr).</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 2","pages":"223-244"},"PeriodicalIF":1.0,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23262","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144809255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Packing Density of Sets With Only Two Nonmixed Gaps","authors":"Alexander Natalchenko, Arsenii Sagdeev","doi":"10.1002/jgt.23269","DOIUrl":"https://doi.org/10.1002/jgt.23269","url":null,"abstract":"<div>\u0000 \u0000 <p>For a finite set of integers such that the first few gaps between its consecutive elements equal <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>a</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, while the remaining gaps equal <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>b</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, we study dense packings of its translates on the line. We obtain an explicit lower bound on the corresponding optimal density, conjecture its tightness, and prove it in case one of the gap lengths, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>a</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> or <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>b</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, appears only once. This is equivalent to a Motzkin problem on the independence ratio of certain integer distance graphs.</p>\u0000 </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 3","pages":"263-271"},"PeriodicalIF":1.0,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Sufficient Condition for Cubic 3-Connected Plane Bipartite Graphs to be Hamiltonian","authors":"Jan Florek","doi":"10.1002/jgt.23270","DOIUrl":"https://doi.org/10.1002/jgt.23270","url":null,"abstract":"<div>\u0000 \u0000 <p>Barnette's conjecture asserts that every cubic 3-connected plane bipartite graph is hamiltonian. Although, in general, the problem is still open, some partial results are known. In particular, let us call a face of a plane graph big (small) if it has at least six edges (it has four edges, respectively). Goodey proved for a 3-connected bipartite cubic plane graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>P</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, that if all big faces in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>P</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> have exactly six edges, then <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>P</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is hamiltonian. In this paper, we prove that the same is true under the condition that no face in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>P</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> has more than four big neighbours. We also prove, that if each vertex in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>P</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is incident both with a small and a big face, then <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>P</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> has at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mn>2</mn>\u0000 \u0000 <mi>k</mi>\u0000 </msup>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> different Hamilton cycles, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mfenced>\u0000 <mfrac>\u0000 <mrow>\u0000 <mo>∣</mo>\u0000 \u0000 <mi>B</mi>\u0000 \u0000 <mo>∣</mo>\u0000 \u0000 <mo>−</mo>\u0000 \u0000","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 3","pages":"272-282"},"PeriodicalIF":1.0,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}