Journal of Graph Theory最新文献

筛选
英文 中文
Edge-transitive cubic graphs of twice square-free order 两倍无平方阶的边跨立方图
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-09-16 DOI: 10.1002/jgt.23168
Gui Xian Liu, Zai Ping Lu
{"title":"Edge-transitive cubic graphs of twice square-free order","authors":"Gui Xian Liu,&nbsp;Zai Ping Lu","doi":"10.1002/jgt.23168","DOIUrl":"10.1002/jgt.23168","url":null,"abstract":"<p>A graph is edge-transitive if its automorphism group acts transitively on the edge set. This paper presents a complete classification for connected edge-transitive cubic graphs of order <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $2n$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> is even and square-free. In particular, it is shown that such a graph is either symmetric or isomorphic to one of the following graphs: a semisymmetric graph of order 420, a semisymmetric graph of order 29,260, and five families of semisymmetric graphs constructed from the simple group <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mtext>PSL</mtext>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>p</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${{bf{text{PSL}}}}_{2}(p)$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"173-204"},"PeriodicalIF":0.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The maximum number of pentagons in a planar graph
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-09-16 DOI: 10.1002/jgt.23172
Ervin Győri, Addisu Paulos, Nika Salia, Casey Tompkins, Oscar Zamora
{"title":"The maximum number of pentagons in a planar graph","authors":"Ervin Győri,&nbsp;Addisu Paulos,&nbsp;Nika Salia,&nbsp;Casey Tompkins,&nbsp;Oscar Zamora","doi":"10.1002/jgt.23172","DOIUrl":"https://doi.org/10.1002/jgt.23172","url":null,"abstract":"<p>In 1979, Hakimi and Schmeichel considered the problem of maximizing the number of cycles of a given length in an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-vertex planar graph. They precisely determined the maximum number of triangles and four-cycles and presented a conjecture for the maximum number of pentagons. In this work, we confirm their conjecture. Even more, we characterize the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-vertex, planar graphs with the maximum number of pentagons.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"229-256"},"PeriodicalIF":0.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breaking small automorphisms by list colourings 通过列表着色打破小自变形
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-09-16 DOI: 10.1002/jgt.23181
Jakub Kwaśny, Marcin Stawiski
{"title":"Breaking small automorphisms by list colourings","authors":"Jakub Kwaśny,&nbsp;Marcin Stawiski","doi":"10.1002/jgt.23181","DOIUrl":"10.1002/jgt.23181","url":null,"abstract":"<p>For a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>, we define a small automorphism as one that maps some vertex into its neighbour. We investigate the edge colourings of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> that break every small automorphism of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>. We show that such a colouring can be chosen from any set of lists of length 3. In addition, we show that any set of lists of length 2 on both edges and vertices of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> yields a total colouring which breaks all the small automorphisms of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>. These results are sharp, and they match the known bounds for the nonlist variant.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"288-292"},"PeriodicalIF":0.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a Norine–Thomas conjecture concerning minimal bricks 关于最小砖块的诺林-托马斯猜想
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-09-10 DOI: 10.1002/jgt.23175
Xing Feng
{"title":"On a Norine–Thomas conjecture concerning minimal bricks","authors":"Xing Feng","doi":"10.1002/jgt.23175","DOIUrl":"10.1002/jgt.23175","url":null,"abstract":"<p>A 3-connected graph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> is a <i>brick</i> if <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mi>S</mi>\u0000 </mrow></math> has a perfect matching, for each pair <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow></math> of vertices of <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math>. A brick <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> is <i>minimal</i> if <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mi>e</mi>\u0000 </mrow></math> ceases to be a brick for every edge <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>e</mi>\u0000 \u0000 <mo>∈</mo>\u0000 \u0000 <mi>E</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow></math>. Norine and Thomas proved that each minimal brick contains at least three vertices of degree three and made a stronger conjecture: there exists <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>α</mi>\u0000 \u0000 <mo>&gt;</mo>\u0000 \u0000 <mn>0</mn>\u0000 </mrow></math> such that every minimal brick <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> has at least <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>α</mi>\u0000 \u0000 <mo>∣</mo>\u0000 \u0000 <mi>V</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>∣</mo>\u0000 </mrow></math> cubic vertices. In this paper, we prove this conjecture holds for all minimal bricks of an average degree no less than 23/5. As its corollary, we show that each minimal brick on <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow></math> vertices contains more than <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>/</mo>\u0000 \u0000 <mn>5</mn>\u0000 </mrow></math> vertices of degree at most four.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"162-172"},"PeriodicalIF":0.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variants of the Gyárfás–Sumner conjecture: Oriented trees and rainbow paths Gyárfás-Sumner 猜想的变体:定向树和彩虹路径
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-09-10 DOI: 10.1002/jgt.23171
Manu Basavaraju, L. Sunil Chandran, Mathew C. Francis, Karthik Murali
{"title":"Variants of the Gyárfás–Sumner conjecture: Oriented trees and rainbow paths","authors":"Manu Basavaraju,&nbsp;L. Sunil Chandran,&nbsp;Mathew C. Francis,&nbsp;Karthik Murali","doi":"10.1002/jgt.23171","DOIUrl":"10.1002/jgt.23171","url":null,"abstract":"&lt;p&gt;Given a finite family &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℱ&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; of graphs, we say that a graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; is “&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℱ&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt;-free” if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; does not contain any graph in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℱ&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; as a subgraph. We abbreviate &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℱ&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt;-free to just “&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt;-free” when &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℱ&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;}&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt;. A vertex-colored graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; is called “rainbow” if no two vertices of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; have the same color. Given an integer &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; and a finite family of graphs &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℱ&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt;, let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;ℱ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; denote the smallest integer such that any properly vertex-colored &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℱ&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt;-free graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; having &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;≥&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"136-161"},"PeriodicalIF":0.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum: The diameter of AT-free graphs 更正:无 AT 图形的直径
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-09-10 DOI: 10.1002/jgt.23170
Guillaume Ducoffe
{"title":"Corrigendum: The diameter of AT-free graphs","authors":"Guillaume Ducoffe","doi":"10.1002/jgt.23170","DOIUrl":"10.1002/jgt.23170","url":null,"abstract":"<p>This corrigendum corrects an error found in the proof of correctness of the algorithm by [Ducoffe, JGT, 2022, 99(4), pp. 594–614], Theorem 6. An erroneous result from Deogun and Kratsch was used in the original proof. There are no changes in the algorithm itself.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"848-850"},"PeriodicalIF":0.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23170","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removable edges in near-bipartite bricks 近似二方砖中的可移动边缘
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-09-09 DOI: 10.1002/jgt.23173
Yipei Zhang, Fuliang Lu, Xiumei Wang, Jinjiang Yuan
{"title":"Removable edges in near-bipartite bricks","authors":"Yipei Zhang,&nbsp;Fuliang Lu,&nbsp;Xiumei Wang,&nbsp;Jinjiang Yuan","doi":"10.1002/jgt.23173","DOIUrl":"10.1002/jgt.23173","url":null,"abstract":"&lt;p&gt;An edge &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; of a matching covered graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; is &lt;i&gt;removable&lt;/i&gt; if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; is also matching covered. The notion of removable edge arises in connection with ear decompositions of matching covered graphs introduced by Lovász and Plummer. A nonbipartite matching covered graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; is a &lt;i&gt;brick&lt;/i&gt; if it is free of nontrivial tight cuts. Carvalho, Lucchesi and Murty proved that every brick other than &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mover&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;6&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; has at least &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Δ&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; removable edges. A brick &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; is &lt;i&gt;near-bipartite&lt;/i&gt; if it has a pair of edges &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;}&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; such that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 \u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"113-135"},"PeriodicalIF":0.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal graphs with forbidden wheel minors 具有禁止轮未成年人的通用图
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-09-08 DOI: 10.1002/jgt.23174
Thilo Krill
{"title":"Universal graphs with forbidden wheel minors","authors":"Thilo Krill","doi":"10.1002/jgt.23174","DOIUrl":"10.1002/jgt.23174","url":null,"abstract":"<p>Let <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>W</mi>\u0000 </mrow></math> be any wheel graph and <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> the class of all countable graphs not containing <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>W</mi>\u0000 </mrow></math> as a minor. We show that there exists a graph in <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> which contains every graph in <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> as an induced subgraph.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"100-112"},"PeriodicalIF":0.9,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On vertex-transitive graphs with a unique hamiltonian cycle 关于具有唯一哈密顿循环的顶点变换图
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-08-22 DOI: 10.1002/jgt.23166
Babak Miraftab, Dave Witte Morris
{"title":"On vertex-transitive graphs with a unique hamiltonian cycle","authors":"Babak Miraftab,&nbsp;Dave Witte Morris","doi":"10.1002/jgt.23166","DOIUrl":"10.1002/jgt.23166","url":null,"abstract":"<p>A graph is said to be <i>uniquely hamiltonian</i> if it has a unique hamiltonian cycle. For a natural extension of this concept to infinite graphs, we find all uniquely hamiltonian vertex-transitive graphs with finitely many ends, and also discuss some examples with infinitely many ends. In particular, we show each nonabelian free group <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 \u0000 <mi>n</mi>\u0000 </msub>\u0000 </mrow></math> has a Cayley graph of degree <span></span><math>\u0000 \u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>n</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow></math> that has a unique hamiltonian circle. (A weaker statement had been conjectured by Georgakopoulos.) Furthermore, we prove that these Cayley graphs of <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 \u0000 <mi>n</mi>\u0000 </msub>\u0000 </mrow></math> are outerplanar.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"65-99"},"PeriodicalIF":0.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23166","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonisomorphic two-dimensional algebraically defined graphs over R R R R 上的非同构二维代数定义图
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-08-19 DOI: 10.1002/jgt.23161
Brian G. Kronenthal, Joe Miller, Alex Nash, Jacob Roeder, Hani Samamah, Tony W. H. Wong
{"title":"Nonisomorphic two-dimensional algebraically defined graphs over \u0000 \u0000 \u0000 \u0000 R\u0000 \u0000 \u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23161:jgt23161-math-0001\" wiley:location=\"equation/jgt23161-math-0001.png\"><mrow><mrow><mi mathvariant=\"double-struck\">R</mi></mrow></mrow></math>","authors":"Brian G. Kronenthal,&nbsp;Joe Miller,&nbsp;Alex Nash,&nbsp;Jacob Roeder,&nbsp;Hani Samamah,&nbsp;Tony W. H. Wong","doi":"10.1002/jgt.23161","DOIUrl":"https://doi.org/10.1002/jgt.23161","url":null,"abstract":"&lt;p&gt;For &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 \u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 \u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt;, let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; be a two-dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; and two vertices &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;[&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;]&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; are adjacent if and only if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;&lt;/","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"50-64"},"PeriodicalIF":0.9,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信