The Average Solution of a TSP Instance in a Graph

IF 0.9 3区 数学 Q2 MATHEMATICS
Stijn Cambie
{"title":"The Average Solution of a TSP Instance in a Graph","authors":"Stijn Cambie","doi":"10.1002/jgt.23232","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We define the average <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-TSP distance <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>μ</mi>\n \n <mrow>\n <mtext>tsp</mtext>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> of a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> as the average length of a shortest closed walk visiting <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices, that is, the expected length of the solution for a random TSP instance with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> uniformly random chosen vertices. We prove relations with the average <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-Steiner distance and characterize the cases where equality occurs. We also give sharp bounds for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>μ</mi>\n \n <mrow>\n <mtext>tsp</mtext>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> given the order of the graph.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"332-338"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23232","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define the average k -TSP distance μ tsp , k of a graph G as the average length of a shortest closed walk visiting k vertices, that is, the expected length of the solution for a random TSP instance with k uniformly random chosen vertices. We prove relations with the average k -Steiner distance and characterize the cases where equality occurs. We also give sharp bounds for μ tsp , k ( G ) given the order of the graph.

图中TSP实例的平均解
我们定义k -TSP平均距离μ tsp,取图G的k为经过k个顶点的最短封闭行走的平均长度,即:具有k个一致随机选择顶点的随机TSP实例的解的期望长度。我们用平均k -Steiner距离证明了这种关系,并描述了等式发生的情况。我们也给出了μ tsp的明确界限,k (G)给出图的阶数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信