共形刚性图

IF 0.9 3区 数学 Q2 MATHEMATICS
Stefan Steinerberger, Rekha R. Thomas
{"title":"共形刚性图","authors":"Stefan Steinerberger,&nbsp;Rekha R. Thomas","doi":"10.1002/jgt.23229","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Given a finite, simple, connected graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>E</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>, we consider the associated graph Laplacian matrix <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n \n <mo>=</mo>\n \n <mi>D</mi>\n \n <mo>−</mo>\n \n <mi>A</mi>\n </mrow>\n </mrow>\n </semantics></math> with eigenvalues <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0</mn>\n \n <mo>=</mo>\n \n <msub>\n <mi>λ</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>&lt;</mo>\n \n <msub>\n <mi>λ</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>≤</mo>\n \n <mo>⋯</mo>\n \n <mo>≤</mo>\n \n <msub>\n <mi>λ</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. One can also consider the same graph equipped with positive edge weights <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>w</mi>\n \n <mo>:</mo>\n \n <mi>E</mi>\n \n <mo>→</mo>\n \n <msub>\n <mi>R</mi>\n \n <mrow>\n <mo>&gt;</mo>\n \n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> normalized to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mo>∑</mo>\n \n <mrow>\n <mi>e</mi>\n \n <mo>∈</mo>\n \n <mi>E</mi>\n </mrow>\n </msub>\n \n <msub>\n <mi>w</mi>\n \n <mi>e</mi>\n </msub>\n \n <mo>=</mo>\n \n <mo>∣</mo>\n \n <mi>E</mi>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n </semantics></math> and the associated weighted Laplacian matrix <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>L</mi>\n \n <mi>w</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. We say that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is <i>conformally rigid</i> if constant edge-weights maximize the second eigenvalue <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>λ</mi>\n \n <mn>2</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>w</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>L</mi>\n \n <mi>w</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> over all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>w</mi>\n </mrow>\n </mrow>\n </semantics></math>, and minimize <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>λ</mi>\n \n <mi>n</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>w</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>L</mi>\n \n <msup>\n <mi>w</mi>\n \n <mo>′</mo>\n </msup>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> over all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>w</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>, that is, for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>w</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>w</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>,\n\n </p><div><span><!--FIGURE--><span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>λ</mi>\n \n <mn>2</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>w</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <msub>\n <mi>λ</mi>\n \n <mn>2</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <msub>\n <mi>λ</mi>\n \n <mi>n</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <msub>\n <mi>λ</mi>\n \n <mi>n</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>w</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>.</mo>\n </mrow>\n </mrow>\n </semantics></math></span><span></span></div>\n <p>Conformal rigidity requires an extraordinary amount of structure in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. Every edge-transitive graph is conformally rigid. We prove that every distance regular graph, and hence every strongly regular graph, is conformally rigid. Certain special graph embeddings can be used to characterize conformal rigidity. Cayley graphs can be conformally rigid but need not be, we prove a sufficient criterion. We also find a small set of conformally rigid graphs that do not belong to any of the above categories; these include the Hoffman graph, the crossing number graph 6B and others. Conformal rigidity can be certified via semidefinite programming, we provide explicit examples.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"366-386"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformally Rigid Graphs\",\"authors\":\"Stefan Steinerberger,&nbsp;Rekha R. Thomas\",\"doi\":\"10.1002/jgt.23229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Given a finite, simple, connected graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mo>,</mo>\\n \\n <mi>E</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mo>∣</mo>\\n \\n <mo>=</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, we consider the associated graph Laplacian matrix <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>L</mi>\\n \\n <mo>=</mo>\\n \\n <mi>D</mi>\\n \\n <mo>−</mo>\\n \\n <mi>A</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with eigenvalues <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>0</mn>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mi>λ</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>&lt;</mo>\\n \\n <msub>\\n <mi>λ</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mo>⋯</mo>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>λ</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. One can also consider the same graph equipped with positive edge weights <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>w</mi>\\n \\n <mo>:</mo>\\n \\n <mi>E</mi>\\n \\n <mo>→</mo>\\n \\n <msub>\\n <mi>R</mi>\\n \\n <mrow>\\n <mo>&gt;</mo>\\n \\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> normalized to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mo>∑</mo>\\n \\n <mrow>\\n <mi>e</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>E</mi>\\n </mrow>\\n </msub>\\n \\n <msub>\\n <mi>w</mi>\\n \\n <mi>e</mi>\\n </msub>\\n \\n <mo>=</mo>\\n \\n <mo>∣</mo>\\n \\n <mi>E</mi>\\n \\n <mo>∣</mo>\\n </mrow>\\n </mrow>\\n </semantics></math> and the associated weighted Laplacian matrix <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>L</mi>\\n \\n <mi>w</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. We say that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is <i>conformally rigid</i> if constant edge-weights maximize the second eigenvalue <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>λ</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>w</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>L</mi>\\n \\n <mi>w</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> over all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>w</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, and minimize <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>λ</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>w</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>L</mi>\\n \\n <msup>\\n <mi>w</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> over all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>w</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math>, that is, for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>w</mi>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>w</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math>,\\n\\n </p><div><span><!--FIGURE--><span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>λ</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>w</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>λ</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>1</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>λ</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>1</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>λ</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>w</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>.</mo>\\n </mrow>\\n </mrow>\\n </semantics></math></span><span></span></div>\\n <p>Conformal rigidity requires an extraordinary amount of structure in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. Every edge-transitive graph is conformally rigid. We prove that every distance regular graph, and hence every strongly regular graph, is conformally rigid. Certain special graph embeddings can be used to characterize conformal rigidity. Cayley graphs can be conformally rigid but need not be, we prove a sufficient criterion. We also find a small set of conformally rigid graphs that do not belong to any of the above categories; these include the Hoffman graph, the crossing number graph 6B and others. Conformal rigidity can be certified via semidefinite programming, we provide explicit examples.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 3\",\"pages\":\"366-386\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23229\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23229","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个有限简单连通图G = (V),E)与∣V∣= n,我们考虑特征值为0的关联图拉普拉斯矩阵L = D−Aλ 1 &lt;λ 2≤λ n。也可以考虑具有正边权w的图:E→R &gt;0归一化到∑e∈ewe =∣e∣和相关的加权拉普拉斯矩阵Lw . 我们说G是保形刚性的如果恒边权使第二个特征值λ 2 (w) (L w / w)最小化λ n (w ')lw '除以所有w‘,也就是说,对于所有的w, w ’,λ 2 (w)≤λ 2(1)≤λ n(1)≤λ n (w ')。保形刚度在G中需要大量的结构。每一个边传递图都是保角刚性的。我们证明了每一个距离正则图,从而每一个强正则图,都是保角刚性的。某些特殊的图嵌入可以用来表征保形刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformally Rigid Graphs

Given a finite, simple, connected graph G = ( V , E ) with V = n , we consider the associated graph Laplacian matrix L = D A with eigenvalues 0 = λ 1 < λ 2 λ n . One can also consider the same graph equipped with positive edge weights w : E R > 0 normalized to e E w e = E and the associated weighted Laplacian matrix L w . We say that G is conformally rigid if constant edge-weights maximize the second eigenvalue λ 2 ( w ) of L w over all w , and minimize λ n ( w ) of L w over all w , that is, for all w , w ,

λ 2 ( w ) λ 2 ( 1 ) λ n ( 1 ) λ n ( w ) .

Conformal rigidity requires an extraordinary amount of structure in G . Every edge-transitive graph is conformally rigid. We prove that every distance regular graph, and hence every strongly regular graph, is conformally rigid. Certain special graph embeddings can be used to characterize conformal rigidity. Cayley graphs can be conformally rigid but need not be, we prove a sufficient criterion. We also find a small set of conformally rigid graphs that do not belong to any of the above categories; these include the Hoffman graph, the crossing number graph 6B and others. Conformal rigidity can be certified via semidefinite programming, we provide explicit examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信