{"title":"图中TSP实例的平均解","authors":"Stijn Cambie","doi":"10.1002/jgt.23232","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We define the average <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-TSP distance <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>μ</mi>\n \n <mrow>\n <mtext>tsp</mtext>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> of a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> as the average length of a shortest closed walk visiting <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices, that is, the expected length of the solution for a random TSP instance with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> uniformly random chosen vertices. We prove relations with the average <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-Steiner distance and characterize the cases where equality occurs. We also give sharp bounds for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>μ</mi>\n \n <mrow>\n <mtext>tsp</mtext>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> given the order of the graph.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"332-338"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Average Solution of a TSP Instance in a Graph\",\"authors\":\"Stijn Cambie\",\"doi\":\"10.1002/jgt.23232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We define the average <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-TSP distance <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>μ</mi>\\n \\n <mrow>\\n <mtext>tsp</mtext>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> of a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> as the average length of a shortest closed walk visiting <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> vertices, that is, the expected length of the solution for a random TSP instance with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> uniformly random chosen vertices. We prove relations with the average <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-Steiner distance and characterize the cases where equality occurs. We also give sharp bounds for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>μ</mi>\\n \\n <mrow>\\n <mtext>tsp</mtext>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> given the order of the graph.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 3\",\"pages\":\"332-338\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23232\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23232","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We define the average -TSP distance of a graph as the average length of a shortest closed walk visiting vertices, that is, the expected length of the solution for a random TSP instance with uniformly random chosen vertices. We prove relations with the average -Steiner distance and characterize the cases where equality occurs. We also give sharp bounds for given the order of the graph.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .