{"title":"List Packing and Correspondence Packing of Planar Graphs","authors":"Daniel W. Cranston, Evelyne Smith-Roberge","doi":"10.1002/jgt.23222","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> and a list assignment <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>L</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math>, an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math>-packing consists of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math>-colorings <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>φ</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>φ</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>φ</mi>\n \n <mi>i</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≠</mo>\n \n <msub>\n <mi>φ</mi>\n \n <mi>j</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> and all distinct <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> denote the smallest <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math>-packing for every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>L</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> denote the set of all planar graphs with girth at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>. We show that (i) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mn>8</mn>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>∈</mo>\n \n <msub>\n <mi>P</mi>\n \n <mn>3</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> and (ii) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mn>5</mn>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>∈</mo>\n \n <msub>\n <mi>P</mi>\n \n <mn>4</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> and (iii) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>∈</mo>\n \n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. Part (i) makes progress on a problem of Cambie, Cames van Batenburg, Davies, and Kang. We also consider the analogue of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math> for correspondence coloring, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>c</mi>\n \n <mo>⋆</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>. In fact, all bounds stated above for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math> also hold for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>c</mi>\n \n <mo>⋆</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"339-352"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23222","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a graph and a list assignment with for all , an -packing consists of -colorings such that for all and all distinct . Let denote the smallest such that has an -packing for every with for all . Let denote the set of all planar graphs with girth at least . We show that (i) for all and (ii) for all and (iii) for all . Part (i) makes progress on a problem of Cambie, Cames van Batenburg, Davies, and Kang. We also consider the analogue of for correspondence coloring, . In fact, all bounds stated above for also hold for .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .