{"title":"Polynomial Characterizations of Distance-Biregular Graphs","authors":"Sabrina Lato","doi":"10.1002/jgt.23227","DOIUrl":"https://doi.org/10.1002/jgt.23227","url":null,"abstract":"<div>\u0000 \u0000 <p>Fiol, Garriga, and Yebra introduced the notion of pseudo-distance-regular vertices, which they used to come up with a new characterization of distance-regular graphs. Building on that work, Fiol and Garriga developed the spectral excess theorem for distance-regular graphs. We extend both these characterizations to distance-biregular graphs and show how these characterizations can be used to study bipartite graphs with distance-regular halved graphs and graphs with the spectrum of a distance-biregular graph.</p>\u0000 </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"282-293"},"PeriodicalIF":0.9,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143944669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extremal Results on Conflict-Free Coloring","authors":"Sriram Bhyravarapu, Shiwali Gupta, Subrahmanyam Kalyanasundaram, Rogers Mathew","doi":"10.1002/jgt.23223","DOIUrl":"https://doi.org/10.1002/jgt.23223","url":null,"abstract":"<div>\u0000 \u0000 <p>A conflict-free open neighborhood (CFON) coloring of a graph is an assignment of colors to the vertices such that for every vertex there is a color that appears exactly once in its open neighborhood. For a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, the smallest number of colors required for such a coloring is called the CFON chromatic number and is denoted by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>χ</mi>\u0000 \u0000 <mi>ON</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. By considering closed neighborhood instead of open neighborhood, we obtain the analogous notions of conflict-free (CF) closed neighborhood (CFCN) coloring, and CFCN chromatic number (denoted by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>χ</mi>\u0000 \u0000 <mi>CN</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>). The notion of CF coloring was introduced in 2002, and has since received considerable attention. We study CFON and CFCN colorings and show the following results. In what follows, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> denotes the maximum degree of the graph.\u0000\u0000 </p><ul>\u0000 \u0000 <li>\u0000 <p>We show that if <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>K</mi>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"259-268"},"PeriodicalIF":0.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143944530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Polynomial Method for Three-Path Extendability of List Colourings of Planar Graphs","authors":"Przemysław Gordinowicz, Paweł Twardowski","doi":"10.1002/jgt.23214","DOIUrl":"https://doi.org/10.1002/jgt.23214","url":null,"abstract":"<div>\u0000 \u0000 <p>We restate Thomassen's theorem of 3-extendability (Thomassen, Journal of Combinatorial Theory Series B, 97, 571–583), an extension of the famous planar 5-choosability theorem, in terms of graph polynomials. This yields an Alon–Tarsi equivalent of 3-extendability.</p>\u0000 </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 2","pages":"237-254"},"PeriodicalIF":0.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143846078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agnijo Banerjee, João Pedro Marciano, Adva Mond, Jan Petr, Julien Portier
{"title":"The Complexity of Decomposing a Graph into a Matching and a Bounded Linear Forest","authors":"Agnijo Banerjee, João Pedro Marciano, Adva Mond, Jan Petr, Julien Portier","doi":"10.1002/jgt.23208","DOIUrl":"https://doi.org/10.1002/jgt.23208","url":null,"abstract":"<div>\u0000 \u0000 <p>Deciding whether a graph can be edge-decomposed into a matching and a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23208:jgt23208-math-0001\" wiley:location=\"equation/jgt23208-math-0001.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\u0000 </semantics></math>-bounded linear forest was recently shown by Campbell, Hörsch, and Moore to be nonedeterministic Polynomial time (NP)-complete for every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>9</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23208:jgt23208-math-0002\" wiley:location=\"equation/jgt23208-math-0002.png\"><mrow><mrow><mi>k</mi><mo>unicode{x02265}</mo><mn>9</mn></mrow></mrow></math></annotation>\u0000 </semantics></math>, and solvable in polynomial time for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23208:jgt23208-math-0003\" wiley:location=\"equation/jgt23208-math-0003.png\"><mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></mrow></mrow></math></annotation>\u0000 </semantics></math>. In the first part of this paper, we close this gap by showing that this problem is NP-complete for every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>3</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23208:jgt23208-math-0004\" wiley:location=\"equation/jgt23208-math-0004.png\"><mrow><mrow><mi>k</mi><mo>unicode{x02265}</mo><mn>3</mn>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"76-87"},"PeriodicalIF":0.9,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Ubiquity of Oriented Double Rays","authors":"Florian Gut, Thilo Krill, Florian Reich","doi":"10.1002/jgt.23216","DOIUrl":"https://doi.org/10.1002/jgt.23216","url":null,"abstract":"<p>A digraph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0001\" wiley:location=\"equation/jgt23216-math-0001.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\u0000 </semantics></math> is called <i>ubiquitous</i> if every digraph that contains arbitrarily many vertex-disjoint copies of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0002\" wiley:location=\"equation/jgt23216-math-0002.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\u0000 </semantics></math> also contains infinitely many vertex-disjoint copies of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0003\" wiley:location=\"equation/jgt23216-math-0003.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\u0000 </semantics></math>. We study oriented double rays, that is, digraphs <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0004\" wiley:location=\"equation/jgt23216-math-0004.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\u0000 </semantics></math> whose underlying undirected graphs are double rays. Calling a vertex of an oriented double ray a turn if it has in-degree or out-degree 2, we prove that an oriented double ray with at least one turn is ubiquitous if and only if it has a (finite) odd number of turns. It remains an open problem to determine whether the consistently oriented double ray is ubiquitous.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"62-67"},"PeriodicalIF":0.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23216","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}