{"title":"The maximum number of odd cycles in a planar graph","authors":"Emily Heath, Ryan R. Martin, Chris Wells","doi":"10.1002/jgt.23197","DOIUrl":"https://doi.org/10.1002/jgt.23197","url":null,"abstract":"<p>How many copies of a fixed odd cycle, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>m</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${C}_{2m+1}$</annotation>\u0000 </semantics></math>, can a planar graph contain? We answer this question asymptotically for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 \u0000 <mo>∈</mo>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>3</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>4</mn>\u0000 </mrow>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $min {2,3,4}$</annotation>\u0000 </semantics></math> and prove a bound which is tight up to a factor of 3/2 for all other values of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math>. This extends the prior results of Cox and Martin and of Lv, Győri, He, Salia, Tompkins, and Zhu on the analogous question for even cycles. Our bounds result from a reduction to the following maximum likelihood question: which probability mass <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>μ</mi>\u0000 </mrow>\u0000 <annotation> $mu $</annotation>\u0000 </semantics></math> on the edges of some clique maximizes the probability that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math> edges sampled independently from <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>μ</mi>\u0000 </mrow>\u0000 <annotation> $mu $</annotation>\u0000 </semantics></math> form either a cycle or a path?</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"745-780"},"PeriodicalIF":0.9,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23197","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143456010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Odd chromatic number of graph classes","authors":"Rémy Belmonte, Ararat Harutyunyan, Noleen Köhler, Nikolaos Melissinos","doi":"10.1002/jgt.23200","DOIUrl":"https://doi.org/10.1002/jgt.23200","url":null,"abstract":"<p>A graph is called <i>odd</i> (respectively, <i>even</i>) if every vertex has odd (respectively, even) degree. Gallai proved that every graph can be partitioned into two even induced subgraphs, or into an odd and an even induced subgraph. We refer to a partition into odd subgraphs as an <i>odd colouring</i> of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>. Scott proved that a connected graph admits an odd colouring if and only if it has an even number of vertices. We say that a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-odd colourable if it can be partitioned into at most <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math> odd induced subgraphs. The <i>odd chromatic number of</i> <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>, denoted by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>χ</mi>\u0000 \u0000 <mtext>odd</mtext>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${chi }_{text{odd}}(G)$</annotation>\u0000 </semantics></math>, is the minimum integer <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math> for which <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-odd colourable. We initiate the systematic study of odd colouring and odd chromatic number of graph classes. We fir","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"722-744"},"PeriodicalIF":0.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23200","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of symmetry-preserving operations on 3-connectivity","authors":"Heidi Van den Camp","doi":"10.1002/jgt.23196","DOIUrl":"https://doi.org/10.1002/jgt.23196","url":null,"abstract":"<p>In 2017, Brinkmann, Goetschalckx and Schein introduced a very general way of describing operations on embedded graphs that preserve all orientation-preserving symmetries of the graph. This description includes all well-known operations such as Dual, Truncation and Ambo. As these operations are applied locally, they are called local orientation-preserving symmetry-preserving operations (lopsp-operations). In this text, we will use the general description of these operations to determine their effect on 3-connectivity. Recently it was proved that all lopsp-operations preserve 3-connectivity of graphs that have face-width at least three. We present a simple condition that characterises exactly which lopsp-operations preserve 3-connectivity for all embedded graphs, even for those with face-width less than three.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"672-704"},"PeriodicalIF":0.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graphs with girth \u0000 \u0000 \u0000 2\u0000 ℓ\u0000 +\u0000 1\u0000 \u0000 $2ell +1$\u0000 and without longer odd holes are 3-colorable","authors":"Rong Chen","doi":"10.1002/jgt.23195","DOIUrl":"https://doi.org/10.1002/jgt.23195","url":null,"abstract":"<p>For a number <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 <mo>≥</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation> $ell ge 2$</annotation>\u0000 </semantics></math>, let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mi>ℓ</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${{mathscr{G}}}_{ell }$</annotation>\u0000 </semantics></math> denote the family of graphs which have girth <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>ℓ</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation> $2ell +1$</annotation>\u0000 </semantics></math> and have no odd hole with length greater than <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>ℓ</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation> $2ell +1$</annotation>\u0000 </semantics></math>. Wu et al. conjectured that every graph in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mo>⋃</mo>\u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 <mo>≥</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 </msub>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mi>ℓ</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${bigcup }_{ell ge 2}{{mathscr{G}}}_{ell }$</annotation>\u0000 </semantics></math> is 3-colorable. Chudnovsky et al. and Wu et al., respectively, proved that every graph in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${{mathscr{G}}}_{2}$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mn>3</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${{mathscr{G}}}_{3}$</annotation>\u0000 </semantics></math> is 3-colorable. In this paper, we prove that every graph in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mo>⋃</mo>\u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 <mo>≥</mo>\u0000 <mn>5</mn>\u0000 </mrow>\u0000 </msub>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mi","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"661-671"},"PeriodicalIF":0.9,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}