Journal of Graph Theory最新文献

筛选
英文 中文
Cycles in 3-connected claw-free planar graphs and 4-connected planar graphs without 4-cycles 3连通无爪平面图和4连通无4周期平面图中的周期
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-21 DOI: 10.1002/jgt.23152
On-Hei Solomon Lo
{"title":"Cycles in 3-connected claw-free planar graphs and 4-connected planar graphs without 4-cycles","authors":"On-Hei Solomon Lo","doi":"10.1002/jgt.23152","DOIUrl":"10.1002/jgt.23152","url":null,"abstract":"<p>The cycle spectrum <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>CS</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${mathscr{CS}}(G)$</annotation>\u0000 </semantics></math> of a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is the set of the cycle lengths in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>. Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${mathscr{G}}$</annotation>\u0000 </semantics></math> be a graph class. For any integer <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>3</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $kge 3$</annotation>\u0000 </semantics></math>, define <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>f</mi>\u0000 \u0000 <mi>G</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>k</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${f}_{{mathscr{G}}}(k)$</annotation>\u0000 </semantics></math> to be the least integer <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mi>k</mi>\u0000 \u0000 <mo>′</mo>\u0000 </msup>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${k}^{^{prime} }ge k$</annotation>\u0000 </semantics>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local version of Vizing's theorem for multigraphs 多图维京定理的局部版本
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-16 DOI: 10.1002/jgt.23155
Clinton T. Conley, Jan Grebík, Oleg Pikhurko
{"title":"Local version of Vizing's theorem for multigraphs","authors":"Clinton T. Conley, Jan Grebík, Oleg Pikhurko","doi":"10.1002/jgt.23155","DOIUrl":"10.1002/jgt.23155","url":null,"abstract":"<p>Extending a result of Christiansen, we prove that every multigraph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>V</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>E</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G=(V,E)$</annotation>\u0000 </semantics></math> admits a proper edge colouring <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>ϕ</mi>\u0000 \u0000 <mo>:</mo>\u0000 \u0000 <mi>E</mi>\u0000 \u0000 <mo>→</mo>\u0000 \u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <mrow>\u0000 <mn>1</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mo>…</mo>\u0000 <mspace></mspace>\u0000 </mrow>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $phi :Eto {1,2,ldots ,}$</annotation>\u0000 </semantics></math> which is <i>local</i>, that is, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>ϕ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>e</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>⩽</mo>\u0000 \u0000 <mi>max</mi>\u0000 \u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <mrow>\u0000 <mi>d</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23155","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141721055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability from graph symmetrization arguments in generalized Turán problems 广义图兰问题中图对称论证的稳定性
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-15 DOI: 10.1002/jgt.23151
Dániel Gerbner, Hilal Hama Karim
{"title":"Stability from graph symmetrization arguments in generalized Turán problems","authors":"Dániel Gerbner, Hilal Hama Karim","doi":"10.1002/jgt.23151","DOIUrl":"10.1002/jgt.23151","url":null,"abstract":"<p>Given graphs <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mtext>ex</mtext>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>H</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>F</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $text{ex}(n,H,F)$</annotation>\u0000 </semantics></math> denotes the largest number of copies of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math> in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math>-free <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-vertex graphs. Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>χ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>H</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo><</mo>\u0000 \u0000 <mi>χ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>F</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicolor Turán numbers II: A generalization of the Ruzsa–Szemerédi theorem and new results on cliques and odd cycles 多色图兰数 II:鲁兹萨-塞梅雷迪定理的一般化以及关于小群和奇数循环的新结果
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-14 DOI: 10.1002/jgt.23147
Benedek Kovács, Zoltán Lóránt Nagy
{"title":"Multicolor Turán numbers II: A generalization of the Ruzsa–Szemerédi theorem and new results on cliques and odd cycles","authors":"Benedek Kovács, Zoltán Lóránt Nagy","doi":"10.1002/jgt.23147","DOIUrl":"10.1002/jgt.23147","url":null,"abstract":"<p>In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mtext>ex</mtext>\u0000 \u0000 <mi>F</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>G</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${text{ex}}_{F}(n,G)$</annotation>\u0000 </semantics></math> denote the maximum number of edge-disjoint copies of a fixed simple graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math> that can be placed on an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-vertex ground set without forming a subgraph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> whose edges are from different <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math>-copies. The case when both <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141649705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thin edges in cubic braces 立方括号中的细边
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-14 DOI: 10.1002/jgt.23150
Xiaoling He, Fuliang Lu
{"title":"Thin edges in cubic braces","authors":"Xiaoling He, Fuliang Lu","doi":"10.1002/jgt.23150","DOIUrl":"10.1002/jgt.23150","url":null,"abstract":"<p>For a vertex set <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $X$</annotation>\u0000 </semantics></math> in a graph, the <i>edge cut</i> <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∂</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>X</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $partial (X)$</annotation>\u0000 </semantics></math> is the set of edges with exactly one end vertex in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $X$</annotation>\u0000 </semantics></math>. An edge cut <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∂</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>X</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $partial (X)$</annotation>\u0000 </semantics></math> is <i>tight</i> if every perfect matching of the graph contains exactly one edge in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∂</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>X</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $partial (X)$</annotation>\u0000 </semantics></math>. A matching covered bipartite graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is a <i>brace</i> if, for every tight cut <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∂</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>X</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141650079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth rates of the bipartite Erdős–Gyárfás function 双向厄尔多斯-京法斯函数的增长率
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-11 DOI: 10.1002/jgt.23149
Xihe Li, Hajo Broersma, Ligong Wang
{"title":"Growth rates of the bipartite Erdős–Gyárfás function","authors":"Xihe Li, Hajo Broersma, Ligong Wang","doi":"10.1002/jgt.23149","DOIUrl":"10.1002/jgt.23149","url":null,"abstract":"<p>Given two graphs <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G,H$</annotation>\u0000 </semantics></math> and a positive integer <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $q$</annotation>\u0000 </semantics></math>, an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>q</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $(H,q)$</annotation>\u0000 </semantics></math>-coloring of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is an edge-coloring of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> such that every copy of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math> in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> receives at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $q$</annotation>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23149","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximum odd induced subgraph of a graph concerning its chromatic number 关于图形色度数的最大奇数诱导子图
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-09 DOI: 10.1002/jgt.23148
Tao Wang, Baoyindureng Wu
{"title":"Maximum odd induced subgraph of a graph concerning its chromatic number","authors":"Tao Wang, Baoyindureng Wu","doi":"10.1002/jgt.23148","DOIUrl":"10.1002/jgt.23148","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>f</mi>\u0000 \u0000 <mi>o</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${f}_{o}(G)$</annotation>\u0000 </semantics></math> be the maximum order of an odd induced subgraph of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>. In 1992, Scott proposed a conjecture that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>f</mi>\u0000 \u0000 <mi>o</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mfrac>\u0000 <mi>n</mi>\u0000 \u0000 <mrow>\u0000 <mi>χ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mfrac>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${f}_{o}(G)ge frac{n}{chi (G)}$</annotation>\u0000 </semantics></math> for a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> of order <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> without isolated vertices, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>χ</mi>\u0000 \u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cliques in squares of graphs with maximum average degree less than 4 最大平均度数小于 4 的图形正方形中的小群
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-02 DOI: 10.1002/jgt.23125
Daniel W. Cranston, Gexin Yu
{"title":"Cliques in squares of graphs with maximum average degree less than 4","authors":"Daniel W. Cranston, Gexin Yu","doi":"10.1002/jgt.23125","DOIUrl":"10.1002/jgt.23125","url":null,"abstract":"<p>Hocquard, Kim, and Pierron constructed, for every even integer <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $Dge 2$</annotation>\u0000 </semantics></math>, a 2-degenerate graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>G</mi>\u0000 \u0000 <mi>D</mi>\u0000 </msub>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${G}_{D}$</annotation>\u0000 </semantics></math> with maximum degree <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $D$</annotation>\u0000 </semantics></math> such that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>ω</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <msubsup>\u0000 <mi>G</mi>\u0000 \u0000 <mi>D</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msubsup>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mfrac>\u0000 <mn>5</mn>\u0000 \u0000 <mn>2</mn>\u0000 </mfrac>\u0000 \u0000 <mi>D</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $omega ({G}_{D}^{2})=frac{5}{2}D$</annotation>\u0000 </semantics></math>. We prove for (a) all 2-degenerate graphs <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> and (b) all graphs <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23125","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141531766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A characterization of regular partial cubes whose all convex cycles have the same lengths 所有凸循环长度相同的规则局部立方体的特征描述
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-06-28 DOI: 10.1002/jgt.23126
Yan-Ting Xie, Yong-De Feng, Shou-Jun Xu
{"title":"A characterization of regular partial cubes whose all convex cycles have the same lengths","authors":"Yan-Ting Xie,&nbsp;Yong-De Feng,&nbsp;Shou-Jun Xu","doi":"10.1002/jgt.23126","DOIUrl":"10.1002/jgt.23126","url":null,"abstract":"<p>Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $2n$</annotation>\u0000 </semantics></math> where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>⩾</mo>\u0000 \u0000 <mn>4</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $ngeqslant 4$</annotation>\u0000 </semantics></math>) if and only if all its convex cycles are 4-cycles (resp., 6-cycles, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $2n$</annotation>\u0000 </semantics></math>-cycles). In particular, the partial cubes whose all convex cycles are 4-cycles are equivalent to almost-median graphs. Therefore, we conclude that regular almost-median graphs are exactly hypercubes, which generalizes the result by Mulder—regular median graphs are hypercubes.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polynomial bounds for chromatic number VIII. Excluding a path and a complete multipartite graph 色度数的多项式边界 VIII.排除路径和完整多方图
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-06-24 DOI: 10.1002/jgt.23129
Tung Nguyen, Alex Scott, Paul Seymour
{"title":"Polynomial bounds for chromatic number VIII. Excluding a path and a complete multipartite graph","authors":"Tung Nguyen,&nbsp;Alex Scott,&nbsp;Paul Seymour","doi":"10.1002/jgt.23129","DOIUrl":"10.1002/jgt.23129","url":null,"abstract":"&lt;p&gt;We prove that for every path &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, and every integer &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $d$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, there is a polynomial &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $f$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; such that every graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with chromatic number greater than &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $f(t)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; either contains &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; as an induced subgraph, or contains as a subgraph the complete &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $d$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-partite graph with parts of cardinality &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $t$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. For &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信