{"title":"Total Coloring Graphs With Large Maximum Degree","authors":"Aseem Dalal, Jessica McDonald, Songling Shan","doi":"10.1002/jgt.23268","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We prove that for any graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, the total chromatic number of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>2</mn>\n \n <mfenced>\n <mfrac>\n <mrow>\n <mo>|</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n </mrow>\n \n <mrow>\n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n </mfenced>\n </mrow>\n </mrow>\n </semantics></math>. This saves one color in comparison with the result of Hind from 1992. In particular, our result says that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mo>|</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has a total coloring using at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math> colors. When <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is regular and has a sufficient number of vertices, we can actually save an additional two colors. Specifically, we prove that for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0</mn>\n \n <mo><</mo>\n \n <mi>ε</mi>\n \n <mo><</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math>, there exists <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>n</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow>\n </mrow>\n </semantics></math> such that: if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-regular graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <msub>\n <mi>n</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> vertices with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>≥</mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>ε</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>T</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math>. This confirms the Total Coloring Conjecture for such graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 3","pages":"249-262"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23268","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that for any graph , the total chromatic number of is at most . This saves one color in comparison with the result of Hind from 1992. In particular, our result says that if , then has a total coloring using at most colors. When is regular and has a sufficient number of vertices, we can actually save an additional two colors. Specifically, we prove that for any , there exists such that: if is an -regular graph on vertices with , then . This confirms the Total Coloring Conjecture for such graphs .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .