{"title":"A Proof to Bang-Jensen, Havet and Yeo's Conjecture on the Hamiltonian Cycles Avoiding Prescribed Arcs in Semicomplete Digraphs","authors":"Ruijuan Li, Yaoxiang Di, Ruiping Zhang, Xinhong Zhang","doi":"10.1002/jgt.23256","DOIUrl":"https://doi.org/10.1002/jgt.23256","url":null,"abstract":"<div>\u0000 \u0000 <p>In 2023, Bang-Jensen, Havet and Yeo [J. Graph Theory 102 (2023) 578-606] conjectured that every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-strong semicomplete digraph contains a hamiltonian cycle avoiding any prescribed set of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> arcs, which was inspired by the result of Fraisse and Thomassen that, every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-strong tournament contains a hamiltonian cycle avoiding any prescribed set of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> arcs. In this paper, we prove the conjecture.</p>\u0000 </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 2","pages":"145-154"},"PeriodicalIF":1.0,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144805836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Nordhaus–Gaddum Problem for the Spectral Gap of a Graph","authors":"Sooyeong Kim, Neal Madras","doi":"10.1002/jgt.23253","DOIUrl":"https://doi.org/10.1002/jgt.23253","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> be a graph on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> vertices, with complement <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mover>\u0000 <mi>G</mi>\u0000 \u0000 <mo>¯</mo>\u0000 </mover>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. The spectral gap of the transition probability matrix of a random walk on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is used to estimate how fast the random walk becomes stationary. We prove that the larger spectral gap of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mover>\u0000 <mi>G</mi>\u0000 \u0000 <mo>¯</mo>\u0000 </mover>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>Ω</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mn>1</mn>\u0000 \u0000 <mo>∕</mo>\u0000 \u0000 <mi>n</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. Moreover, if all degrees are <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>Ω</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 2","pages":"132-144"},"PeriodicalIF":1.0,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23253","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144811248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extremal Results on Disjoint Cycles in Tournaments and Bipartite Tournaments","authors":"Bin Chen","doi":"10.1002/jgt.23255","DOIUrl":"https://doi.org/10.1002/jgt.23255","url":null,"abstract":"<div>\u0000 \u0000 <p>In this paper, we give two extremal results on vertex disjoint-directed cycles in tournaments and bipartite tournaments. Let <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow></math> and <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow></math> be two integers. The first result is that for every strong tournament <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow></math>, with a minimum out-degree of at least <span></span><math>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mi>k</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow></math> with <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>3</mn>\u0000 </mrow></math>, any <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow></math> vertex disjoint-directed cycle, which has a length of at least <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow></math> in <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow></math>, has the same length if and only if <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mn>3</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>k</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow></math> and <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow></math> is isomorphic to <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>P</mi>\u0000 \u0000 <msub>\u0000 <mi>T</mi>\u0000 \u0000 <mn>7</mn>\u0000 </msub>\u0000 </mrow></math>. The second result is that for each strong bipartite tournament <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow></math>, with a minimum out-degree of at least <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 \u0000 <mi>k</mi>\u0000 \u0000 <mo>−</mo>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 1","pages":"111-121"},"PeriodicalIF":0.9,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144624549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gary R. W. Greaves, Jeven Syatriadi, Charissa I. Utomo
{"title":"Chromatic Polynomials of Signed Graphs and Dominating-Vertex Deletion Formulae","authors":"Gary R. W. Greaves, Jeven Syatriadi, Charissa I. Utomo","doi":"10.1002/jgt.23236","DOIUrl":"https://doi.org/10.1002/jgt.23236","url":null,"abstract":"<div>\u0000 \u0000 <p>We exhibit non-switching-isomorphic signed graphs that share a common underlying graph and common chromatic polynomials, thereby answering a question posed by Zaslavsky. We introduce a new pair of bivariate chromatic polynomials that generalises the chromatic polynomials of signed graphs. We establish recursive dominating-vertex deletion formulae for these bivariate chromatic polynomials. As an application, we demonstrate that for a certain family of signed threshold graphs, isomorphism can be characterised by the equality of bivariate chromatic polynomials.</p>\u0000 </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 1","pages":"101-110"},"PeriodicalIF":0.9,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144624857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiangdong Ai, Gregory Gutin, Hui Lei, Anders Yeo, Yacong Zhou
{"title":"Number of Subgraphs and Their Converses in Tournaments and New Digraph Polynomials","authors":"Jiangdong Ai, Gregory Gutin, Hui Lei, Anders Yeo, Yacong Zhou","doi":"10.1002/jgt.23257","DOIUrl":"https://doi.org/10.1002/jgt.23257","url":null,"abstract":"<p>An oriented graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is <i>converse invariant</i> if, for any tournament <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, the number of copies of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is equal to that of its converse <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>−</mo>\u0000 \u0000 <mi>D</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. El Sahili and Ghazo Hanna [J. Graph Theory 102 (2023), 684-701] showed that any oriented graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> with maximum degree at most 2 is converse invariant. They proposed a question: Can we characterize all converse invariant oriented graphs? In this paper, we introduce a digraph polynomial and employ it to give a necessary condition for an oriented graph to be converse invariant. This polynomial serves as a cornerstone in proving all the results presented in this paper. In particular, we characterize all orientations of trees with diameter at most 3 that are converse invariant. We also show that all orientations of regular graphs are not converse invariant if <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>−</mo>\u0000 \u0000 <mi>D</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> have different degree sequences. In addition, in contrast to the findings of El Sahili and Ghazo Hanna, w","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 2","pages":"127-131"},"PeriodicalIF":1.0,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23257","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144810990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}