Journal of Graph Theory最新文献

筛选
英文 中文
Small Planar Hypohamiltonian Graphs 小平面次哈密顿图
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-12-04 DOI: 10.1002/jgt.23205
Cheng-Chen Tsai
{"title":"Small Planar Hypohamiltonian Graphs","authors":"Cheng-Chen Tsai","doi":"10.1002/jgt.23205","DOIUrl":"https://doi.org/10.1002/jgt.23205","url":null,"abstract":"<div>\u0000 \u0000 <p>A graph is hypohamiltonian if it is non-hamiltonian, but the deletion of every single vertex gives a Hamiltonian graph. Until now, the smallest known planar hypohamiltonian graph had 40 vertices, a result due to Jooyandeh, McKay, Östergård, Pettersson, and Zamfirescu. That result is here improved upon by two planar hypohamiltonian graphs on 34 vertices. We exploited a special subgraph contained in two graphs of Jooyandeh et al., and modified it to construct the two 34-vertex graphs and six planar hypohamiltonian graphs on 37 vertices. Each of the 34-vertex graphs has 26 cubic vertices, improving upon the result of Jooyandeh et al. that planar hypohamiltonian graphs have 30 cubic vertices. We use the 34-vertex graphs to construct hypohamiltonian graphs of order 34 with crossing number 1, improving the best-known bound of 36 due to Wiener. Whether there exists a planar hypohamiltonian graph on 41 vertices was an open question. We settled this question by applying an operation introduced by Thomassen to the 37-vertex graphs to obtain several planar hypohamiltonian graphs on 41 vertices. The 25 planar hypohamiltonian graphs on 40 vertices of Jooyandeh et al. have no nontrivial automorphisms. The result is here improved upon by six planar hypohamiltonian graphs on 40 vertices with nontrivial automorphisms.</p>\u0000 </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"799-807"},"PeriodicalIF":0.9,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tight Upper Bound on the Clique Size in the Square of 2-Degenerate Graphs 2-退化图的平方团大小的紧上界
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-11-27 DOI: 10.1002/jgt.23201
Seog-Jin Kim, Xiaopan Lian
{"title":"Tight Upper Bound on the Clique Size in the Square of 2-Degenerate Graphs","authors":"Seog-Jin Kim,&nbsp;Xiaopan Lian","doi":"10.1002/jgt.23201","DOIUrl":"https://doi.org/10.1002/jgt.23201","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;The &lt;i&gt;square&lt;/i&gt; of a graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, denoted &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${G}^{2}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, has the same vertex set as &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and has an edge between two vertices if the distance between them in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is at most 2. In general, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Δ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;≤&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;msup&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;≤&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;Δ&lt;/mi&gt;\u0000 \u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 \u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${rm{Delta }}(G)+1le chi ({G}^{2})le {rm{Delta }}{(G)}^{2}+1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; for every graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Charpentier (2014) asked whether &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;m","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"781-798"},"PeriodicalIF":0.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The maximum number of odd cycles in a planar graph 一个平面图中奇环的最大数目
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-11-10 DOI: 10.1002/jgt.23197
Emily Heath, Ryan R. Martin, Chris Wells
{"title":"The maximum number of odd cycles in a planar graph","authors":"Emily Heath,&nbsp;Ryan R. Martin,&nbsp;Chris Wells","doi":"10.1002/jgt.23197","DOIUrl":"https://doi.org/10.1002/jgt.23197","url":null,"abstract":"<p>How many copies of a fixed odd cycle, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>m</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${C}_{2m+1}$</annotation>\u0000 </semantics></math>, can a planar graph contain? We answer this question asymptotically for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 \u0000 <mo>∈</mo>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>3</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>4</mn>\u0000 </mrow>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $min {2,3,4}$</annotation>\u0000 </semantics></math> and prove a bound which is tight up to a factor of 3/2 for all other values of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math>. This extends the prior results of Cox and Martin and of Lv, Győri, He, Salia, Tompkins, and Zhu on the analogous question for even cycles. Our bounds result from a reduction to the following maximum likelihood question: which probability mass <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>μ</mi>\u0000 </mrow>\u0000 <annotation> $mu $</annotation>\u0000 </semantics></math> on the edges of some clique maximizes the probability that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math> edges sampled independently from <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>μ</mi>\u0000 </mrow>\u0000 <annotation> $mu $</annotation>\u0000 </semantics></math> form either a cycle or a path?</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"745-780"},"PeriodicalIF":0.9,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23197","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143456010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Odd chromatic number of graph classes 图类的奇色数
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-11-06 DOI: 10.1002/jgt.23200
Rémy Belmonte, Ararat Harutyunyan, Noleen Köhler, Nikolaos Melissinos
{"title":"Odd chromatic number of graph classes","authors":"Rémy Belmonte,&nbsp;Ararat Harutyunyan,&nbsp;Noleen Köhler,&nbsp;Nikolaos Melissinos","doi":"10.1002/jgt.23200","DOIUrl":"https://doi.org/10.1002/jgt.23200","url":null,"abstract":"&lt;p&gt;A graph is called &lt;i&gt;odd&lt;/i&gt; (respectively, &lt;i&gt;even&lt;/i&gt;) if every vertex has odd (respectively, even) degree. Gallai proved that every graph can be partitioned into two even induced subgraphs, or into an odd and an even induced subgraph. We refer to a partition into odd subgraphs as an &lt;i&gt;odd colouring&lt;/i&gt; of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Scott proved that a connected graph admits an odd colouring if and only if it has an even number of vertices. We say that a graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-odd colourable if it can be partitioned into at most &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; odd induced subgraphs. The &lt;i&gt;odd chromatic number of&lt;/i&gt; &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, denoted by &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 \u0000 &lt;mtext&gt;odd&lt;/mtext&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${chi }_{text{odd}}(G)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, is the minimum integer &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; for which &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-odd colourable. We initiate the systematic study of odd colouring and odd chromatic number of graph classes. We fir","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"722-744"},"PeriodicalIF":0.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23200","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of symmetry-preserving operations on 3-connectivity 对称保持运算对3-连通性的影响
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-11-04 DOI: 10.1002/jgt.23196
Heidi Van den Camp
{"title":"The effect of symmetry-preserving operations on 3-connectivity","authors":"Heidi Van den Camp","doi":"10.1002/jgt.23196","DOIUrl":"https://doi.org/10.1002/jgt.23196","url":null,"abstract":"<p>In 2017, Brinkmann, Goetschalckx and Schein introduced a very general way of describing operations on embedded graphs that preserve all orientation-preserving symmetries of the graph. This description includes all well-known operations such as Dual, Truncation and Ambo. As these operations are applied locally, they are called local orientation-preserving symmetry-preserving operations (lopsp-operations). In this text, we will use the general description of these operations to determine their effect on 3-connectivity. Recently it was proved that all lopsp-operations preserve 3-connectivity of graphs that have face-width at least three. We present a simple condition that characterises exactly which lopsp-operations preserve 3-connectivity for all embedded graphs, even for those with face-width less than three.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"672-704"},"PeriodicalIF":0.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Edge-arc-disjoint paths in semicomplete mixed graphs 半完全混合图中的边弧不相交路径
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-11-04 DOI: 10.1002/jgt.23199
J. Bang-Jensen, Y. Wang
{"title":"Edge-arc-disjoint paths in semicomplete mixed graphs","authors":"J. Bang-Jensen,&nbsp;Y. Wang","doi":"10.1002/jgt.23199","DOIUrl":"https://doi.org/10.1002/jgt.23199","url":null,"abstract":"&lt;p&gt;The so-called &lt;i&gt;weak-2-linkage problem&lt;/i&gt; asks for a given digraph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $D=(V,A)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and distinct vertices &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${s}_{1},{s}_{2},{t}_{1},{t}_{2}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $D$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; whether &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $D$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; has arc-disjoint paths &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${P}_{1},{P}_{2}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; so that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${P}_{i}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is an &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"705-721"},"PeriodicalIF":0.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23199","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphs with girth 2 ℓ + 1 $2ell +1$ and without longer odd holes are 3-colorable 周长为2 +1$ 2ell +1$且没有较长的奇孔的图是三色的
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-10-30 DOI: 10.1002/jgt.23195
Rong Chen
{"title":"Graphs with girth \u0000 \u0000 \u0000 2\u0000 ℓ\u0000 +\u0000 1\u0000 \u0000 $2ell +1$\u0000 and without longer odd holes are 3-colorable","authors":"Rong Chen","doi":"10.1002/jgt.23195","DOIUrl":"https://doi.org/10.1002/jgt.23195","url":null,"abstract":"&lt;p&gt;For a number &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;mo&gt;≥&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $ell ge 2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${{mathscr{G}}}_{ell }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; denote the family of graphs which have girth &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $2ell +1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and have no odd hole with length greater than &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $2ell +1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Wu et al. conjectured that every graph in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;⋃&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;mo&gt;≥&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${bigcup }_{ell ge 2}{{mathscr{G}}}_{ell }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is 3-colorable. Chudnovsky et al. and Wu et al., respectively, proved that every graph in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${{mathscr{G}}}_{2}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${{mathscr{G}}}_{3}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is 3-colorable. In this paper, we prove that every graph in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;⋃&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;mo&gt;≥&lt;/mo&gt;\u0000 &lt;mn&gt;5&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mi","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"661-671"},"PeriodicalIF":0.9,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Face-simple minimal quadrangulations of surfaces 曲面的简单最小四边形
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-10-27 DOI: 10.1002/jgt.23198
Sarah Abusaif, Warren Singh, Timothy Sun
{"title":"Face-simple minimal quadrangulations of surfaces","authors":"Sarah Abusaif,&nbsp;Warren Singh,&nbsp;Timothy Sun","doi":"10.1002/jgt.23198","DOIUrl":"https://doi.org/10.1002/jgt.23198","url":null,"abstract":"<p>For each surface besides the sphere, projective plane, and Klein bottle, we construct a face-simple minimal quadrangulation, that is, a simple quadrangulation on the fewest number of vertices possible, whose dual is also a simple graph. Our result answers a question of Liu, Ellingham, and Ye while providing a simpler proof of their main result. The inductive construction is based on an earlier idea for finding near-quadrangular embeddings of the complete graphs using the diamond sum operation.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"647-655"},"PeriodicalIF":0.9,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143120103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved bounds on the cop number when forbidding a minor 改进了禁止未成年人使用警察号码的限制
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-10-13 DOI: 10.1002/jgt.23194
Franklin Kenter, Erin Meger, Jérémie Turcotte
{"title":"Improved bounds on the cop number when forbidding a minor","authors":"Franklin Kenter,&nbsp;Erin Meger,&nbsp;Jérémie Turcotte","doi":"10.1002/jgt.23194","DOIUrl":"https://doi.org/10.1002/jgt.23194","url":null,"abstract":"&lt;p&gt;Andreae proved that the cop number of connected &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0001\" wiley:location=\"equation/jgt23194-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-minor-free graphs is bounded for every graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0002\" wiley:location=\"equation/jgt23194-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. In particular, the cop number is at most &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;∣&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;h&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;∣&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0003\" wiley:location=\"equation/jgt23194-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;unicode{x02223}&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;unicode{x02212}&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;unicode{x02223}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;h&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0004\" wiley:location=\"equation/jgt23194-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"620-646"},"PeriodicalIF":0.9,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A localized approach for Turán number of long cycles 求解Turán长周期数的局部化方法
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-10-08 DOI: 10.1002/jgt.23191
Kai Zhao, Xiao-Dong Zhang
{"title":"A localized approach for Turán number of long cycles","authors":"Kai Zhao,&nbsp;Xiao-Dong Zhang","doi":"10.1002/jgt.23191","DOIUrl":"https://doi.org/10.1002/jgt.23191","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0001\" wiley:location=\"equation/jgt23191-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a simple graph and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0002\" wiley:location=\"equation/jgt23191-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; denote the length of the longest cycle containing an edge &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0003\" wiley:location=\"equation/jgt23191-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; if there exists a cycle containing &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0004\" wiley:location=\"equation/jgt23191-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, and 2 otherwise. We prove that the summation of 2 divided by &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"582-607"},"PeriodicalIF":0.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信