{"title":"Signed Graphs, Nonorientable Surfaces, and Integer Flows","authors":"You Lu, Rong Luo, Cun-Quan Zhang, Zhang Zhang","doi":"10.1002/jgt.23249","DOIUrl":"https://doi.org/10.1002/jgt.23249","url":null,"abstract":"<div>\u0000 \u0000 <p>In this article, we extend the duality relation between face colorings and integer flows of graphs on orientable surfaces in Tutte's flow theory to both orientable and nonorientable surfaces and study Bouchet's 6-flow conjecture from point of embeddings of graphs on surfaces. Consequently, we verify Bouchet's conjecture for a family of embedded graphs, which have a crosscap-contractible circuit.</p>\u0000 </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 1","pages":"48-58"},"PeriodicalIF":0.9,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144624818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Separating the Edges of a Graph by Cycles and by Subdivisions of \u0000 \u0000 \u0000 \u0000 \u0000 K\u0000 4","authors":"Fábio Botler, Tássio Naia","doi":"10.1002/jgt.23248","DOIUrl":"https://doi.org/10.1002/jgt.23248","url":null,"abstract":"<div>\u0000 \u0000 <p>A <i>separating system</i> of a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is a family <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> of subgraphs of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> for which the following holds: for all distinct edges <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>e</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>f</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, there exists an element in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> that contains <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>e</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> but not <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>f</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. Recently, it has been shown that every graph of order <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> admits a separating system consisting of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mn>19</mn>\u0000 \u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> paths, improving the previous almost linear bound of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>O</","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 1","pages":"41-47"},"PeriodicalIF":0.9,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144624596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}