Journal of Graph Theory最新文献

筛选
英文 中文
Planar graphs having no cycle of length 4, 7, or 9 are DP-3-colorable 没有长度为 4、7 或 9 的周期的平面图是 DP-3 可着色的
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-05-22 DOI: 10.1002/jgt.23123
Yingli Kang, Ligang Jin, Xuding Zhu
{"title":"Planar graphs having no cycle of length 4, 7, or 9 are DP-3-colorable","authors":"Yingli Kang,&nbsp;Ligang Jin,&nbsp;Xuding Zhu","doi":"10.1002/jgt.23123","DOIUrl":"10.1002/jgt.23123","url":null,"abstract":"<p>This paper proves that every planar graph having no cycle of length 4, 7, or 9 is DP-3-colorable.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141111900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimum-degree conditions for rainbow triangles 彩虹三角形的最小度数条件
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-05-15 DOI: 10.1002/jgt.23109
Victor Falgas-Ravry, Klas Markström, Eero Räty
{"title":"Minimum-degree conditions for rainbow triangles","authors":"Victor Falgas-Ravry,&nbsp;Klas Markström,&nbsp;Eero Räty","doi":"10.1002/jgt.23109","DOIUrl":"10.1002/jgt.23109","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mo>≔</mo>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <msub>\u0000 <mi>G</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>G</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>G</mi>\u0000 \u0000 <mn>3</mn>\u0000 </msub>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${bf{G}}:= ({G}_{1},{G}_{2},{G}_{3})$</annotation>\u0000 </semantics></math> be a triple of graphs on a common vertex set <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>V</mi>\u0000 </mrow>\u0000 <annotation> $V$</annotation>\u0000 </semantics></math> of size <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>. A rainbow triangle in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> ${bf{G}}$</annotation>\u0000 </semantics></math> is a triple of edges <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <msub>\u0000 <mi>e</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>e</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>e</mi>\u0000 \u0000 <mn>3</mn>\u0000 </msub>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $({e}_{1},{e}_{2},{e}_{3","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounding the number of odd paths in planar graphs via convex optimization 通过凸优化限定平面图中奇数路径的数量
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-05-15 DOI: 10.1002/jgt.23120
Asaf Cohen Antonir, Asaf Shapira
{"title":"Bounding the number of odd paths in planar graphs via convex optimization","authors":"Asaf Cohen Antonir,&nbsp;Asaf Shapira","doi":"10.1002/jgt.23120","DOIUrl":"10.1002/jgt.23120","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>N</mi>\u0000 \u0000 <mi>P</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>H</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${N}_{{mathscr{P}}}(n,H)$</annotation>\u0000 </semantics></math> denote the maximum number of copies of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math> in an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> vertex planar graph. The problem of bounding this function for various graphs <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math> has been extensively studied since the 70's. A special case that received a lot of attention recently is when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math> is the path on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>m</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation> $2m+1$</annotation>\u0000 </semantics></math> vertices, denoted <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>P</mi>\u0000 \u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>m</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${P}_{2m+1}$</annotation>\u0000 </semantics></math>. Our main result in this paper is that\u0000\u0000 </p><p>This improves upon the previously best known ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23120","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A more accurate view of the Flat Wall Theorem 更准确地理解平墙定理
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-05-13 DOI: 10.1002/jgt.23121
Ignasi Sau, Giannos Stamoulis, Dimitrios M. Thilikos
{"title":"A more accurate view of the Flat Wall Theorem","authors":"Ignasi Sau,&nbsp;Giannos Stamoulis,&nbsp;Dimitrios M. Thilikos","doi":"10.1002/jgt.23121","DOIUrl":"10.1002/jgt.23121","url":null,"abstract":"<p>We introduce a supporting combinatorial framework for the Flat Wall Theorem. In particular, we suggest two variants of the theorem and we introduce a new, more versatile, concept of wall homogeneity as well as the notion of regularity in flat walls. All proposed concepts and results aim at facilitating the use of the irrelevant vertex technique in future algorithmic applications.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23121","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ubiquity of oriented rays 定向射线的普遍性
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-05-12 DOI: 10.1002/jgt.23114
Florian Gut, Thilo Krill, Florian Reich
{"title":"Ubiquity of oriented rays","authors":"Florian Gut,&nbsp;Thilo Krill,&nbsp;Florian Reich","doi":"10.1002/jgt.23114","DOIUrl":"10.1002/jgt.23114","url":null,"abstract":"<p>A digraph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math> is called <i>ubiquitous</i> if every digraph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 <annotation> $D$</annotation>\u0000 </semantics></math> that contains <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math> vertex-disjoint copies of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math> for every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>∈</mo>\u0000 <mi>N</mi>\u0000 </mrow>\u0000 <annotation> $kin {mathbb{N}}$</annotation>\u0000 </semantics></math> also contains infinitely many vertex-disjoint copies of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math>. We characterise which digraphs with rays as underlying undirected graphs are ubiquitous.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23114","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Concentration of hitting times in Erdős-Rényi graphs 厄尔多斯-雷尼图中命中时间的浓度
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-05-12 DOI: 10.1002/jgt.23119
Andrea Ottolini, Stefan Steinerberger
{"title":"Concentration of hitting times in Erdős-Rényi graphs","authors":"Andrea Ottolini,&nbsp;Stefan Steinerberger","doi":"10.1002/jgt.23119","DOIUrl":"10.1002/jgt.23119","url":null,"abstract":"<p>We consider Erdős-Rényi graphs <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>p</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G(n,p)$</annotation>\u0000 </semantics></math> for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 <mo>&lt;</mo>\u0000 <mi>p</mi>\u0000 <mo>&lt;</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation> $0lt plt 1$</annotation>\u0000 </semantics></math> fixed and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>→</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation> $nto infty $</annotation>\u0000 </semantics></math> and study the expected number of steps, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mrow>\u0000 <mi>w</mi>\u0000 <mi>v</mi>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${H}_{wv}$</annotation>\u0000 </semantics></math>, that a random walk started in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>w</mi>\u0000 </mrow>\u0000 <annotation> $w$</annotation>\u0000 </semantics></math> needs to first arrive in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 </mrow>\u0000 <annotation> $v$</annotation>\u0000 </semantics></math>. A natural guess is that an Erdős-Rényi random graph is so homogeneous that it does not really distinguish between vertices and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mrow>\u0000 <mi>w</mi>\u0000 <mi>v</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mo>=</mo>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>+</mo>\u0000 <mi>o</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> ${H}_{wv}=(1+o(1))n$</annotation>\u0000 </sema","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Density of 3-critical signed graphs 三临界有符号图形的密度
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-05-12 DOI: 10.1002/jgt.23117
Laurent Beaudou, Penny Haxell, Kathryn Nurse, Sagnik Sen, Zhouningxin Wang
{"title":"Density of 3-critical signed graphs","authors":"Laurent Beaudou,&nbsp;Penny Haxell,&nbsp;Kathryn Nurse,&nbsp;Sagnik Sen,&nbsp;Zhouningxin Wang","doi":"10.1002/jgt.23117","DOIUrl":"10.1002/jgt.23117","url":null,"abstract":"<p>We say that a signed graph is <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-<i>critical</i> if it is not <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-colorable but every one of its proper subgraphs is <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-colorable. Using the definition of colorability due to Naserasr, Wang, and Zhu that extends the notion of circular colorability, we prove that every 3-critical signed graph on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> vertices has at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mfrac>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <mn>2</mn>\u0000 </mfrac>\u0000 </mrow>\u0000 <annotation> $frac{3n-1}{2}$</annotation>\u0000 </semantics></math> edges, and that this bound is asymptotically tight. It follows that every signed planar or projective-planar graph of girth at least 6 is (circular) 3-colorable, and for the projective-planar case, this girth condition is best possible. To prove our main result, we reformulate it in terms of the existence of a homomorphism to the signed graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>C</mi>\u0000 <mn>3</mn>\u0000 <mo>*</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation> ${C}_{3}^{* }$</annotation>\u0000 </semantics></math>, which is the positive triangle augmented with a negative loop on each vertex.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cutting a tree with subgraph complementation is hard, except for some small trees 用子图互补法切割一棵树是很难的,除非是一些小树
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-05-09 DOI: 10.1002/jgt.23112
Dhanyamol Antony, Sagartanu Pal, R. B. Sandeep, R. Subashini
{"title":"Cutting a tree with subgraph complementation is hard, except for some small trees","authors":"Dhanyamol Antony,&nbsp;Sagartanu Pal,&nbsp;R. B. Sandeep,&nbsp;R. Subashini","doi":"10.1002/jgt.23112","DOIUrl":"10.1002/jgt.23112","url":null,"abstract":"<p>For a graph property <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Π</mi>\u0000 </mrow>\u0000 <annotation> ${rm{Pi }}$</annotation>\u0000 </semantics></math>, Subgraph Complementation to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Π</mi>\u0000 </mrow>\u0000 <annotation> ${rm{Pi }}$</annotation>\u0000 </semantics></math> is the problem to find whether there is a subset <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 <annotation> $S$</annotation>\u0000 </semantics></math> of vertices of the input graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> such that modifying <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> by complementing the subgraph induced by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 <annotation> $S$</annotation>\u0000 </semantics></math> results in a graph satisfying the property <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Π</mi>\u0000 </mrow>\u0000 <annotation> ${rm{Pi }}$</annotation>\u0000 </semantics></math>. We prove that the problem of Subgraph Complementation to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> $T$</annotation>\u0000 </semantics></math>-free graphs is NP-Complete, for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> $T$</annotation>\u0000 </semantics></math> being a tree, except for 41 trees of at most 13 vertices (a graph is <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> $T$</annotation>\u0000 </semantics></math>-free if it does not contain any induced copies of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> $T$</annotation>\u0000 </semantics></math>). This result, along with the four known polynomial-time solvable cases (when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> $T$</annotation>\u0000 </semantics></math> is a path on at most four vertices), leaves behind 37 open cases. Further, we prove that these hard problems do ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turán number of the odd-ballooning of complete bipartite graphs 完整双方位图奇数包络的图兰数
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-05-09 DOI: 10.1002/jgt.23118
Xing Peng, Mengjie Xia
{"title":"Turán number of the odd-ballooning of complete bipartite graphs","authors":"Xing Peng,&nbsp;Mengjie Xia","doi":"10.1002/jgt.23118","DOIUrl":"10.1002/jgt.23118","url":null,"abstract":"<p>Given a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <annotation> $L$</annotation>\u0000 </semantics></math>, the Turán number <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mtext>ex</mtext>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $text{ex}(n,L)$</annotation>\u0000 </semantics></math> is the maximum possible number of edges in an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-vertex <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <annotation> $L$</annotation>\u0000 </semantics></math>-free graph. The study of Turán number of graphs is a central topic in extremal graph theory. Although the celebrated Erdős-Stone-Simonovits theorem gives the asymptotic value of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mtext>ex</mtext>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $text{ex}(n,L)$</annotation>\u0000 </semantics></math> for nonbipartite <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <annotation> $L$</annotation>\u0000 </semantics></math>, it is challenging in general to determine the exact value of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mtext>ex</mtext>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $text{ex}(n,L)$</annotation>\u0000 </semantics></math> for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>χ</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>L</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>≥</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation> $chi (L)ge 3$</annotation>\u0000 </semant","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On induced subgraph of Cartesian product of paths 论路径笛卡尔积的诱导子图
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-05-09 DOI: 10.1002/jgt.23116
Jiasheng Zeng, Xinmin Hou
{"title":"On induced subgraph of Cartesian product of paths","authors":"Jiasheng Zeng,&nbsp;Xinmin Hou","doi":"10.1002/jgt.23116","DOIUrl":"10.1002/jgt.23116","url":null,"abstract":"<p>Chung et al. constructed an induced subgraph of the hypercube <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>Q</mi>\u0000 \u0000 <mi>n</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation> ${Q}^{n}$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>α</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <msup>\u0000 <mi>Q</mi>\u0000 \u0000 <mi>n</mi>\u0000 </msup>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation> $alpha ({Q}^{n})+1$</annotation>\u0000 </semantics></math> vertices and with maximum degree smaller than <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>⌈</mo>\u0000 \u0000 <msqrt>\u0000 <mi>n</mi>\u0000 </msqrt>\u0000 \u0000 <mo>⌉</mo>\u0000 </mrow>\u0000 <annotation> $lceil sqrt{n}rceil $</annotation>\u0000 </semantics></math>. Subsequently, Huang proved the Sensitivity Conjecture by demonstrating that the maximum degree of such an induced subgraph of hypercube <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>Q</mi>\u0000 \u0000 <mi>n</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation> ${Q}^{n}$</annotation>\u0000 </semantics></math> is at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>⌈</mo>\u0000 \u0000 <msqrt>\u0000 <mi>n</mi>\u0000 </msqrt>\u0000 \u0000 <mo>⌉</mo>\u0000 </mrow>\u0000 <annotation> $lceil sqrt{n}rceil $</annotation>\u0000 </semantics></math>, and posed the question: Given a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>, let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $f(G)$</annotation>\u0000 </semantics></math> be the minimum of the maximum degree of an induced subgraph of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信