求助PDF
{"title":"改进了禁止未成年人使用警察号码的限制","authors":"Franklin Kenter, Erin Meger, Jérémie Turcotte","doi":"10.1002/jgt.23194","DOIUrl":null,"url":null,"abstract":"<p>Andreae proved that the cop number of connected <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0001\" wiley:location=\"equation/jgt23194-math-0001.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math>-minor-free graphs is bounded for every graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0002\" wiley:location=\"equation/jgt23194-math-0002.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math>. In particular, the cop number is at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>H</mi>\n \n <mo>−</mo>\n \n <mi>h</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0003\" wiley:location=\"equation/jgt23194-math-0003.png\"><mrow><mrow><mo>\\unicode{x02223}</mo><mi>E</mi><mrow><mo>(</mo><mrow><mi>H</mi><mo>\\unicode{x02212}</mo><mi>h</mi></mrow><mo>)</mo></mrow><mo>\\unicode{x02223}</mo></mrow></mrow></math></annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n \n <mo>−</mo>\n \n <mi>h</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0004\" wiley:location=\"equation/jgt23194-math-0004.png\"><mrow><mrow><mi>H</mi><mo>\\unicode{x02212}</mo><mi>h</mi></mrow></mrow></math></annotation>\n </semantics></math> contains no isolated vertex, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>h</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0005\" wiley:location=\"equation/jgt23194-math-0005.png\"><mrow><mrow><mi>h</mi><mo>\\unicode{x02208}</mo><mi>V</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math>. The main result of this paper is an improvement on this bound, which is most significant when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0006\" wiley:location=\"equation/jgt23194-math-0006.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math> is small or sparse, for instance, when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n \n <mo>−</mo>\n \n <mi>h</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0007\" wiley:location=\"equation/jgt23194-math-0007.png\"><mrow><mrow><mi>H</mi><mo>\\unicode{x02212}</mo><mi>h</mi></mrow></mrow></math></annotation>\n </semantics></math> can be obtained from another graph by multiple edge subdivisions. Some consequences of this result are improvements on the upper bound for the cop number of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>3</mn>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0008\" wiley:location=\"equation/jgt23194-math-0008.png\"><mrow><mrow><msub><mi>K</mi><mrow><mn>3</mn><mo>,</mo><mi>t</mi></mrow></msub></mrow></mrow></math></annotation>\n </semantics></math>-minor-free graphs, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0009\" wiley:location=\"equation/jgt23194-math-0009.png\"><mrow><mrow><msub><mi>K</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi></mrow></msub></mrow></mrow></math></annotation>\n </semantics></math>-minor-free graphs and linklessly embeddable graphs.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"620-646"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved bounds on the cop number when forbidding a minor\",\"authors\":\"Franklin Kenter, Erin Meger, Jérémie Turcotte\",\"doi\":\"10.1002/jgt.23194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Andreae proved that the cop number of connected <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0001\\\" wiley:location=\\\"equation/jgt23194-math-0001.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math>-minor-free graphs is bounded for every graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0002\\\" wiley:location=\\\"equation/jgt23194-math-0002.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math>. In particular, the cop number is at most <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>E</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>H</mi>\\n \\n <mo>−</mo>\\n \\n <mi>h</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0003\\\" wiley:location=\\\"equation/jgt23194-math-0003.png\\\"><mrow><mrow><mo>\\\\unicode{x02223}</mo><mi>E</mi><mrow><mo>(</mo><mrow><mi>H</mi><mo>\\\\unicode{x02212}</mo><mi>h</mi></mrow><mo>)</mo></mrow><mo>\\\\unicode{x02223}</mo></mrow></mrow></math></annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n \\n <mo>−</mo>\\n \\n <mi>h</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0004\\\" wiley:location=\\\"equation/jgt23194-math-0004.png\\\"><mrow><mrow><mi>H</mi><mo>\\\\unicode{x02212}</mo><mi>h</mi></mrow></mrow></math></annotation>\\n </semantics></math> contains no isolated vertex, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>h</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0005\\\" wiley:location=\\\"equation/jgt23194-math-0005.png\\\"><mrow><mrow><mi>h</mi><mo>\\\\unicode{x02208}</mo><mi>V</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math>. The main result of this paper is an improvement on this bound, which is most significant when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0006\\\" wiley:location=\\\"equation/jgt23194-math-0006.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math> is small or sparse, for instance, when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n \\n <mo>−</mo>\\n \\n <mi>h</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0007\\\" wiley:location=\\\"equation/jgt23194-math-0007.png\\\"><mrow><mrow><mi>H</mi><mo>\\\\unicode{x02212}</mo><mi>h</mi></mrow></mrow></math></annotation>\\n </semantics></math> can be obtained from another graph by multiple edge subdivisions. Some consequences of this result are improvements on the upper bound for the cop number of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0008\\\" wiley:location=\\\"equation/jgt23194-math-0008.png\\\"><mrow><mrow><msub><mi>K</mi><mrow><mn>3</mn><mo>,</mo><mi>t</mi></mrow></msub></mrow></mrow></math></annotation>\\n </semantics></math>-minor-free graphs, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0009\\\" wiley:location=\\\"equation/jgt23194-math-0009.png\\\"><mrow><mrow><msub><mi>K</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi></mrow></msub></mrow></mrow></math></annotation>\\n </semantics></math>-minor-free graphs and linklessly embeddable graphs.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 3\",\"pages\":\"620-646\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23194\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23194","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用