{"title":"Tight Upper Bound on the Clique Size in the Square of 2-Degenerate Graphs","authors":"Seog-Jin Kim, Xiaopan Lian","doi":"10.1002/jgt.23201","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The <i>square</i> of a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, denoted <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n <annotation> ${G}^{2}$</annotation>\n </semantics></math>, has the same vertex set as <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and has an edge between two vertices if the distance between them in <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is at most 2. In general, <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>≤</mo>\n \n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>Δ</mi>\n \n <msup>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mn>2</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)+1\\le \\chi ({G}^{2})\\le {\\rm{\\Delta }}{(G)}^{2}+1$</annotation>\n </semantics></math> for every graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Charpentier (2014) asked whether <span></span><math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\chi ({G}^{2})\\le 2{\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>mad</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo><</mo>\n \n <mn>4</mn>\n </mrow>\n <annotation> $\\mathrm{mad}(G)\\lt 4$</annotation>\n </semantics></math>. But Hocquard, Kim, and Pierron (2019) answered his question negatively. For every even value of <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)$</annotation>\n </semantics></math>g, they constructed a 2-degenerate graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}^{2})=\\frac{5}{2}{\\rm{\\Delta }}(G)$</annotation>\n </semantics></math>. Note that if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a 2-degenerate graph, then <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mi>a</mi>\n \n <mi>d</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo><</mo>\n \n <mn>4</mn>\n </mrow>\n <annotation> $mad(G)\\lt 4$</annotation>\n </semantics></math>. Thus, we have that\n\n </p><div><span><!--FIGURE--><span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>max</mi>\n <mrow>\n <mo>{</mo>\n \n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>:</mo>\n \n <mi>G</mi>\n <mspace></mspace>\n <mspace></mspace>\n \n <mtext>is a 2-degenerate graph</mtext>\n <mspace></mspace>\n \n <mo>}</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>3</mn>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>.</mo>\n </mrow>\n <annotation> $\\frac{5}{2}{\\rm{\\Delta }}(G)\\le \\max \\{\\chi ({G}^{2}):G\\,\\,\\text{is a 2\\unicode{x02010}degenerate graph}\\,\\}\\le 3{\\rm{\\Delta }}(G)+1.$</annotation>\n </semantics></math></span><span></span></div>\n <p>So, it was naturally asked whether there exists a constant <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${D}_{0}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\chi ({G}^{2})\\le \\frac{5}{2}{\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a 2-degenerate graph with <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <msub>\n <mi>D</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)\\ge {D}_{0}$</annotation>\n </semantics></math>. Recently, Cranston and Yu (2024) showed that <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>72</mn>\n </mrow>\n <annotation> $\\omega ({G}^{2})\\le \\frac{5}{2}{\\rm{\\Delta }}(G)+72$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a 2-degenerate graph, and <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>60</mn>\n </mrow>\n <annotation> $\\omega ({G}^{2})\\le \\frac{5}{2}{\\rm{\\Delta }}(G)+60$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a 2-degenerate graph with <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>1729</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)\\ge 1729$</annotation>\n </semantics></math>. We show that there exists a constant <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${D}_{0}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}^{2})\\le \\frac{5}{2}{\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a 2-degenerate graph with <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <msub>\n <mi>D</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)\\ge {D}_{0}$</annotation>\n </semantics></math>. This upper bound on <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}^{2})$</annotation>\n </semantics></math> is tight by the construction in Hocquard, Kim, and Pierron.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"781-798"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23201","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The square of a graph , denoted , has the same vertex set as and has an edge between two vertices if the distance between them in is at most 2. In general, for every graph . Charpentier (2014) asked whether if . But Hocquard, Kim, and Pierron (2019) answered his question negatively. For every even value of g, they constructed a 2-degenerate graph such that . Note that if is a 2-degenerate graph, then . Thus, we have that
So, it was naturally asked whether there exists a constant such that if is a 2-degenerate graph with . Recently, Cranston and Yu (2024) showed that if is a 2-degenerate graph, and if is a 2-degenerate graph with . We show that there exists a constant such that if is a 2-degenerate graph with . This upper bound on is tight by the construction in Hocquard, Kim, and Pierron.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .