求解Turán长周期数的局部化方法

IF 0.9 3区 数学 Q2 MATHEMATICS
Kai Zhao, Xiao-Dong Zhang
{"title":"求解Turán长周期数的局部化方法","authors":"Kai Zhao,&nbsp;Xiao-Dong Zhang","doi":"10.1002/jgt.23191","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0001\" wiley:location=\"equation/jgt23191-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> be a simple graph and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>c</mi>\n \n <mi>G</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>e</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0002\" wiley:location=\"equation/jgt23191-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> denote the length of the longest cycle containing an edge <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>e</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0003\" wiley:location=\"equation/jgt23191-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> if there exists a cycle containing <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>e</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0004\" wiley:location=\"equation/jgt23191-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, and 2 otherwise. We prove that the summation of 2 divided by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>c</mi>\n \n <mi>G</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>e</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0005\" wiley:location=\"equation/jgt23191-math-0005.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> over all edges in an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0006\" wiley:location=\"equation/jgt23191-math-0006.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-vertex graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0007\" wiley:location=\"equation/jgt23191-math-0007.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0008\" wiley:location=\"equation/jgt23191-math-0008.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, and characterize all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0009\" wiley:location=\"equation/jgt23191-math-0009.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-vertex extremal graphs that achieve the bound, thereby extending the classic Erdős–Gallai theorem on cycles.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"582-607"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A localized approach for Turán number of long cycles\",\"authors\":\"Kai Zhao,&nbsp;Xiao-Dong Zhang\",\"doi\":\"10.1002/jgt.23191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0001\\\" wiley:location=\\\"equation/jgt23191-math-0001.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> be a simple graph and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>c</mi>\\n \\n <mi>G</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>e</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0002\\\" wiley:location=\\\"equation/jgt23191-math-0002.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> denote the length of the longest cycle containing an edge <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0003\\\" wiley:location=\\\"equation/jgt23191-math-0003.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> if there exists a cycle containing <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0004\\\" wiley:location=\\\"equation/jgt23191-math-0004.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>, and 2 otherwise. We prove that the summation of 2 divided by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>c</mi>\\n \\n <mi>G</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>e</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0005\\\" wiley:location=\\\"equation/jgt23191-math-0005.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> over all edges in an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0006\\\" wiley:location=\\\"equation/jgt23191-math-0006.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-vertex graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0007\\\" wiley:location=\\\"equation/jgt23191-math-0007.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> is at most <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0008\\\" wiley:location=\\\"equation/jgt23191-math-0008.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>, and characterize all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0009\\\" wiley:location=\\\"equation/jgt23191-math-0009.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-vertex extremal graphs that achieve the bound, thereby extending the classic Erdős–Gallai theorem on cycles.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 3\",\"pages\":\"582-607\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23191\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23191","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Let G< math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0001" wiley:location="equation/jgt23191-math-0001.png"><mrow>< /mrow></mrow></ mrow></mrow></ mrow></mrow></math>;c G (e) <math xmlns=“http://www.w3.org/1998/Math/MathML”altimg = " urn: x-wiley: 03649024:媒体:jgt23191: jgt23191 -数学- 0002“威利:位置=“方程/ jgt23191 -数学- 0002. - png”祝辞& lt; mrow> & lt; mrow> & lt; msub> & lt; mi> c< / mi> & lt; mi> G< / mi> & lt; / msub> & lt; mrow> & lt; mo> (& lt; / mo> & lt; mi> e< / mi> & lt; mo>) & lt; / mo> & lt; / mrow> & lt; / mrow> & lt; / mrow> & lt; / math>表示包含边的最长循环的长度e<; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0003" wiley:location="equation/jgt23191-math-0003.png"><mrow><mrow>< /mrow></mrow></ mrow></mrow></ mrow></mrow></math>;如果存在包含e<; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0004“的循环,wiley:location=”equation/jgt23191-math-0004.png"><mrow><mrow>< /mrow></mrow></ mrow></mrow></math>;,否则为2。我们证明了2除以c的和G (e) <;数学xmlns = " http://www.w3.org/1998/Math/MathML " altimg = " urn: x-wiley: 03649024:媒体:jgt23191: jgt23191 -数学- 0005“威利:位置=“方程/ jgt23191 -数学- 0005. - png”祝辞& lt; mrow> & lt; mrow> & lt; msub> & lt; mi> c< / mi> & lt; mi> G< / mi> & lt; / msub> & lt; mrow> & lt; mo> (& lt; / mo> & lt; mi> e< / mi> & lt; mo>) & lt; / mo> & lt; / mrow> & lt; / mrow> & lt; / mrow> & lt; / math>在一个n<; math中的所有边上,xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0006 .png"><mrow>< /mrow></mrow></ mrow></mrow></ mrow></math>;-vertex graph G< math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0007 .png"><mrow>< /mrow></mrow></ mrow></mrow></ mrow></mrow></math>;<math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0008”威利:位置= "方程/ jgt23191 -数学- 0008. png”祝辞& lt; mrow> & lt; mrow> & lt; mi> n< / mi> & lt; mo> \ unicode {x02212} & lt; / mo> & lt; mn> 1 & lt; / mn> & lt; / mrow> & lt; / mrow> & lt; / math>,并描述所有n<; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0009" wiley:location="equation/jgt23191-math-0009.png">< <mrow>< /mrow></mrow></ mrow></mrow></ mrow></mrow></math>;-顶点极值图,实现了界,从而扩展了经典的Erdős-Gallai循环定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A localized approach for Turán number of long cycles

Let G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0001" wiley:location="equation/jgt23191-math-0001.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> be a simple graph and c G ( e ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0002" wiley:location="equation/jgt23191-math-0002.png"><mrow><mrow><msub><mi>c</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></mrow></math> denote the length of the longest cycle containing an edge e <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0003" wiley:location="equation/jgt23191-math-0003.png"><mrow><mrow><mi>e</mi></mrow></mrow></math> if there exists a cycle containing e <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0004" wiley:location="equation/jgt23191-math-0004.png"><mrow><mrow><mi>e</mi></mrow></mrow></math> , and 2 otherwise. We prove that the summation of 2 divided by c G ( e ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0005" wiley:location="equation/jgt23191-math-0005.png"><mrow><mrow><msub><mi>c</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></mrow></math> over all edges in an n <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0006" wiley:location="equation/jgt23191-math-0006.png"><mrow><mrow><mi>n</mi></mrow></mrow></math> -vertex graph G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0007" wiley:location="equation/jgt23191-math-0007.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> is at most n 1 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0008" wiley:location="equation/jgt23191-math-0008.png"><mrow><mrow><mi>n</mi><mo>\unicode{x02212}</mo><mn>1</mn></mrow></mrow></math> , and characterize all n <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0009" wiley:location="equation/jgt23191-math-0009.png"><mrow><mrow><mi>n</mi></mrow></mrow></math> -vertex extremal graphs that achieve the bound, thereby extending the classic Erdős–Gallai theorem on cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信