{"title":"Universal graphs with forbidden wheel minors","authors":"Thilo Krill","doi":"10.1002/jgt.23174","DOIUrl":"10.1002/jgt.23174","url":null,"abstract":"<p>Let <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>W</mi>\u0000 </mrow></math> be any wheel graph and <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> the class of all countable graphs not containing <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>W</mi>\u0000 </mrow></math> as a minor. We show that there exists a graph in <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> which contains every graph in <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> as an induced subgraph.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"100-112"},"PeriodicalIF":0.9,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On vertex-transitive graphs with a unique hamiltonian cycle","authors":"Babak Miraftab, Dave Witte Morris","doi":"10.1002/jgt.23166","DOIUrl":"10.1002/jgt.23166","url":null,"abstract":"<p>A graph is said to be <i>uniquely hamiltonian</i> if it has a unique hamiltonian cycle. For a natural extension of this concept to infinite graphs, we find all uniquely hamiltonian vertex-transitive graphs with finitely many ends, and also discuss some examples with infinitely many ends. In particular, we show each nonabelian free group <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 \u0000 <mi>n</mi>\u0000 </msub>\u0000 </mrow></math> has a Cayley graph of degree <span></span><math>\u0000 \u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>n</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow></math> that has a unique hamiltonian circle. (A weaker statement had been conjectured by Georgakopoulos.) Furthermore, we prove that these Cayley graphs of <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 \u0000 <mi>n</mi>\u0000 </msub>\u0000 </mrow></math> are outerplanar.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"65-99"},"PeriodicalIF":0.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23166","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}