Alberto Espuny Díaz, Lyuben Lichev, Dieter Mitsche, Alexandra Wesolek
{"title":"Sharp threshold for embedding balanced spanning trees in random geometric graphs","authors":"Alberto Espuny Díaz, Lyuben Lichev, Dieter Mitsche, Alexandra Wesolek","doi":"10.1002/jgt.23106","DOIUrl":"10.1002/jgt.23106","url":null,"abstract":"<p>A rooted tree is <i>balanced</i> if the degree of a vertex depends only on its distance to the root. In this paper we determine the sharp threshold for the appearance of a large family of balanced spanning trees in the random geometric graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>r</mi>\u0000 <mo>,</mo>\u0000 <mi>d</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${mathscr{G}}(n,r,d)$</annotation>\u0000 </semantics></math>. In particular, we find the sharp threshold for balanced binary trees. More generally, we show that <i>all</i> sequences of balanced trees with uniformly bounded degrees and height tending to infinity appear above a sharp threshold, and none of these appears below the same value. Our results hold more generally for geometric graphs satisfying a mild condition on the distribution of their vertex set, and we provide a polynomial time algorithm to find such trees.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local degree conditions for \u0000 \u0000 \u0000 \u0000 K\u0000 9\u0000 \u0000 \u0000 ${K}_{9}$\u0000 -minors in graphs","authors":"Takashige Akiyama","doi":"10.1002/jgt.23110","DOIUrl":"10.1002/jgt.23110","url":null,"abstract":"<p>We prove that if each edge of a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> belongs to at least seven triangles, then <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> contains a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mn>9</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${K}_{9}$</annotation>\u0000 </semantics></math>-minor or contains <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>K</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${K}_{1,2,2,2,2,2}$</annotation>\u0000 </semantics></math> as an induced subgraph. This result was conjectured by Albar and Gonçalves in 2018. Moreover, we apply this result to study the stress freeness of graphs.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}