On a conjecture that strengthens Kundu's k k -factor theorem

IF 0.9 3区 数学 Q2 MATHEMATICS
James M. Shook
{"title":"On a conjecture that strengthens Kundu's \n \n \n \n k\n \n \n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0001\" wiley:location=\"equation/jgt23177-math-0001.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math>\n -factor theorem","authors":"James M. Shook","doi":"10.1002/jgt.23177","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>π</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0002\" wiley:location=\"equation/jgt23177-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;\\unicode{x003C0}&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;\\unicode{x02026}&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> be a nonincreasing degree sequence with even <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0003\" wiley:location=\"equation/jgt23177-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. In 1974, Kundu showed that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>π</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>−</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0004\" wiley:location=\"equation/jgt23177-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\"&gt;D&lt;/mi&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;\\unicode{x003C0}&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;\\unicode{x02026}&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is graphic, then some realization of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>π</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0005\" wiley:location=\"equation/jgt23177-math-0005.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;\\unicode{x003C0}&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> has a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0006\" wiley:location=\"equation/jgt23177-math-0006.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-factor. For <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0007\" wiley:location=\"equation/jgt23177-math-0007.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, Busch et al. and later Seacrest for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>≤</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0008\" wiley:location=\"equation/jgt23177-math-0008.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> showed that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>≤</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0009\" wiley:location=\"equation/jgt23177-math-0009.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>π</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0010\" wiley:location=\"equation/jgt23177-math-0010.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\"&gt;D&lt;/mi&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;\\unicode{x003C0}&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is graphic, then there is a realization with a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0011\" wiley:location=\"equation/jgt23177-math-0011.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-factor whose edges can be partitioned into a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mi>r</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0012\" wiley:location=\"equation/jgt23177-math-0012.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-factor and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0013\" wiley:location=\"equation/jgt23177-math-0013.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> edge-disjoint 1-factors. We improve this to any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>≤</mo>\n \n <mi>m</mi>\n \n <mi>i</mi>\n \n <mi>n</mi>\n \n <mrow>\n <mo>{</mo>\n \n <mfenced>\n <mfrac>\n <mrow>\n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>5</mn>\n </mrow>\n \n <mn>3</mn>\n </mfrac>\n </mfenced>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0014\" wiley:location=\"equation/jgt23177-math-0014.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mrow&gt;&lt;mo stretchy=\"true\"&gt;{&lt;/mo&gt;&lt;mfenced close=\"\\unicode{x02309}\" open=\"\\unicode{x02308}\"&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mfrac&gt;&lt;/mfenced&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo stretchy=\"true\"&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. In 1978, Brualdi and then Busch et al. in 2012, conjectured that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>=</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0015\" wiley:location=\"equation/jgt23177-math-0015.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. The conjecture is still open for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>6</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0016\" wiley:location=\"equation/jgt23177-math-0016.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;\\unicode{x02265}&lt;/mo&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. However, Busch et al. showed the conjecture is true when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>≤</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0017\" wiley:location=\"equation/jgt23177-math-0017.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mfrac&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>≥</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0018\" wiley:location=\"equation/jgt23177-math-0018.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x02265}&lt;/mo&gt;&lt;mfrac&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. We explore this conjecture by first developing new tools that generalize edge-exchanges. With these new tools, we can drop the assumption <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>π</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0019\" wiley:location=\"equation/jgt23177-math-0019.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\"&gt;D&lt;/mi&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;\\unicode{x003C0}&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is graphic and show that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>+</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n \n <mo>≥</mo>\n \n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>+</mo>\n \n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0020\" wiley:location=\"equation/jgt23177-math-0020.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x02265}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>π</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0021\" wiley:location=\"equation/jgt23177-math-0021.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;\\unicode{x003C0}&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> has a realization with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0022\" wiley:location=\"equation/jgt23177-math-0022.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> edge-disjoint 1-factors. From this we confirm the conjecture when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>≥</mo>\n \n <mfrac>\n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0023\" wiley:location=\"equation/jgt23177-math-0023.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x02265}&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> or when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>π</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0024\" wiley:location=\"equation/jgt23177-math-0024.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\"&gt;D&lt;/mi&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;\\unicode{x003C0}&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is graphic and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>≤</mo>\n \n <mi>m</mi>\n \n <mi>a</mi>\n \n <mi>x</mi>\n \n <mo>{</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n \n <mo>+</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>−</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0025\" wiley:location=\"equation/jgt23177-math-0025.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;{&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;\\unicode{x02215}&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;\\unicode{x02215}&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mo stretchy=\"false\"&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"463-491"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23177","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let π = ( d 1 , , d n ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0002" wiley:location="equation/jgt23177-math-0002.png"><mrow><mrow><mi>\unicode{x003C0}</mi><mo>=</mo><mrow><mo>(</mo><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>,</mo><mo>\unicode{x02026}</mo><mo>,</mo><msub><mi>d</mi><mi>n</mi></msub></mrow><mo>)</mo></mrow></mrow></mrow></math> be a nonincreasing degree sequence with even n <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0003" wiley:location="equation/jgt23177-math-0003.png"><mrow><mrow><mi>n</mi></mrow></mrow></math> . In 1974, Kundu showed that if D k ( π ) = ( d 1 k , , d n k ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0004" wiley:location="equation/jgt23177-math-0004.png"><mrow><mrow><msub><mi class="MJX-tex-caligraphic" mathvariant="script">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\unicode{x003C0}</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\unicode{x02212}</mo><mi>k</mi><mo>,</mo><mo>\unicode{x02026}</mo><mo>,</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\unicode{x02212}</mo><mi>k</mi></mrow><mo>)</mo></mrow></mrow></mrow></math> is graphic, then some realization of π <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0005" wiley:location="equation/jgt23177-math-0005.png"><mrow><mrow><mi>\unicode{x003C0}</mi></mrow></mrow></math> has a k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0006" wiley:location="equation/jgt23177-math-0006.png"><mrow><mrow><mi>k</mi></mrow></mrow></math> -factor. For r 2 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0007" wiley:location="equation/jgt23177-math-0007.png"><mrow><mrow><mi>r</mi><mo>\unicode{x02264}</mo><mn>2</mn></mrow></mrow></math> , Busch et al. and later Seacrest for r 4 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0008" wiley:location="equation/jgt23177-math-0008.png"><mrow><mrow><mi>r</mi><mo>\unicode{x02264}</mo><mn>4</mn></mrow></mrow></math> showed that if r k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0009" wiley:location="equation/jgt23177-math-0009.png"><mrow><mrow><mi>r</mi><mo>\unicode{x02264}</mo><mi>k</mi></mrow></mrow></math> and D k ( π ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0010" wiley:location="equation/jgt23177-math-0010.png"><mrow><mrow><msub><mi class="MJX-tex-caligraphic" mathvariant="script">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\unicode{x003C0}</mi><mo>)</mo></mrow></mrow></mrow></math> is graphic, then there is a realization with a k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0011" wiley:location="equation/jgt23177-math-0011.png"><mrow><mrow><mi>k</mi></mrow></mrow></math> -factor whose edges can be partitioned into a ( k r ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0012" wiley:location="equation/jgt23177-math-0012.png"><mrow><mrow><mrow><mo>(</mo><mrow><mi>k</mi><mo>\unicode{x02212}</mo><mi>r</mi></mrow><mo>)</mo></mrow></mrow></mrow></math> -factor and r <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0013" wiley:location="equation/jgt23177-math-0013.png"><mrow><mrow><mi>r</mi></mrow></mrow></math> edge-disjoint 1-factors. We improve this to any r m i n { k + 5 3 , k } <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0014" wiley:location="equation/jgt23177-math-0014.png"><mrow><mrow><mi>r</mi><mo>\unicode{x02264}</mo><mi>m</mi><mi>i</mi><mi>n</mi><mrow><mo stretchy="true">{</mo><mfenced close="\unicode{x02309}" open="\unicode{x02308}"><mfrac><mrow><mi>k</mi><mo>\unicode{x0002B}</mo><mn>5</mn></mrow><mn>3</mn></mfrac></mfenced><mo>,</mo><mi>k</mi><mo stretchy="true">}</mo></mrow></mrow></mrow></math> . In 1978, Brualdi and then Busch et al. in 2012, conjectured that r = k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0015" wiley:location="equation/jgt23177-math-0015.png"><mrow><mrow><mi>r</mi><mo>=</mo><mi>k</mi></mrow></mrow></math> . The conjecture is still open for k 6 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0016" wiley:location="equation/jgt23177-math-0016.png"><mrow><mrow><mi>k</mi><mo>\unicode{x02265}</mo><mn>6</mn></mrow></mrow></math> . However, Busch et al. showed the conjecture is true when d 1 n 2 + 1 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0017" wiley:location="equation/jgt23177-math-0017.png"><mrow><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\unicode{x02264}</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>\unicode{x0002B}</mo><mn>1</mn></mrow></mrow></math> or d n n 2 + k 2 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0018" wiley:location="equation/jgt23177-math-0018.png"><mrow><mrow><msub><mi>d</mi><mi>n</mi></msub><mo>\unicode{x02265}</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>\unicode{x0002B}</mo><mi>k</mi><mo>\unicode{x02212}</mo><mn>2</mn></mrow></mrow></math> . We explore this conjecture by first developing new tools that generalize edge-exchanges. With these new tools, we can drop the assumption D k ( π ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0019" wiley:location="equation/jgt23177-math-0019.png"><mrow><mrow><msub><mi class="MJX-tex-caligraphic" mathvariant="script">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\unicode{x003C0}</mi><mo>)</mo></mrow></mrow></mrow></math> is graphic and show that if d d 1 d n + k d 1 d n + k 1 , <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0020" wiley:location="equation/jgt23177-math-0020.png"><mrow><mrow><msub><mi>d</mi><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\unicode{x02212}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\unicode{x0002B}</mo><mi>k</mi></mrow></msub><mo>\unicode{x02265}</mo><msub><mi>d</mi><mn>1</mn></msub><mo>\unicode{x02212}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\unicode{x0002B}</mo><mi>k</mi><mo>\unicode{x02212}</mo><mn>1</mn><mo>,</mo></mrow></mrow></math> then π <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0021" wiley:location="equation/jgt23177-math-0021.png"><mrow><mrow><mi>\unicode{x003C0}</mi></mrow></mrow></math> has a realization with k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0022" wiley:location="equation/jgt23177-math-0022.png"><mrow><mrow><mi>k</mi></mrow></mrow></math> edge-disjoint 1-factors. From this we confirm the conjecture when d n d 1 + k 1 2 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0023" wiley:location="equation/jgt23177-math-0023.png"><mrow><mrow><msub><mi>d</mi><mi>n</mi></msub><mo>\unicode{x02265}</mo><mfrac><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\unicode{x0002B}</mo><mi>k</mi><mo>\unicode{x02212}</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mrow></mrow></math> or when D k ( π ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0024" wiley:location="equation/jgt23177-math-0024.png"><mrow><mrow><msub><mi class="MJX-tex-caligraphic" mathvariant="script">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\unicode{x003C0}</mi><mo>)</mo></mrow></mrow></mrow></math> is graphic and d 1 m a x { n 2 + d n k , ( n + d n ) 2 } <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0025" wiley:location="equation/jgt23177-math-0025.png"><mrow><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\unicode{x02264}</mo><mi>m</mi><mi>a</mi><mi>x</mi><mo stretchy="false">{</mo><mrow><mi>n</mi><mo>\unicode{x02215}</mo><mn>2</mn><mo>\unicode{x0002B}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\unicode{x02212}</mo><mi>k</mi><mo>,</mo><mrow><mo>(</mo><mi>n</mi><mo>\unicode{x0002B}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>\unicode{x02215}</mo><mn>2</mn></mrow><mo stretchy="false">}</mo></mrow></mrow></math> .

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信