{"title":"On a conjecture that strengthens Kundu's \n \n \n \n k\n \n \n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0001\" wiley:location=\"equation/jgt23177-math-0001.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math>\n -factor theorem","authors":"James M. Shook","doi":"10.1002/jgt.23177","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>π</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0002\" wiley:location=\"equation/jgt23177-math-0002.png\"><mrow><mrow><mi>\\unicode{x003C0}</mi><mo>=</mo><mrow><mo>(</mo><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>,</mo><mo>\\unicode{x02026}</mo><mo>,</mo><msub><mi>d</mi><mi>n</mi></msub></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> be a nonincreasing degree sequence with even <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0003\" wiley:location=\"equation/jgt23177-math-0003.png\"><mrow><mrow><mi>n</mi></mrow></mrow></math></annotation>\n </semantics></math>. In 1974, Kundu showed that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>π</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>−</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0004\" wiley:location=\"equation/jgt23177-math-0004.png\"><mrow><mrow><msub><mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\\unicode{x003C0}</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\\unicode{x02212}</mo><mi>k</mi><mo>,</mo><mo>\\unicode{x02026}</mo><mo>,</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\\unicode{x02212}</mo><mi>k</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> is graphic, then some realization of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>π</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0005\" wiley:location=\"equation/jgt23177-math-0005.png\"><mrow><mrow><mi>\\unicode{x003C0}</mi></mrow></mrow></math></annotation>\n </semantics></math> has a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0006\" wiley:location=\"equation/jgt23177-math-0006.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math>-factor. For <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0007\" wiley:location=\"equation/jgt23177-math-0007.png\"><mrow><mrow><mi>r</mi><mo>\\unicode{x02264}</mo><mn>2</mn></mrow></mrow></math></annotation>\n </semantics></math>, Busch et al. and later Seacrest for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>≤</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0008\" wiley:location=\"equation/jgt23177-math-0008.png\"><mrow><mrow><mi>r</mi><mo>\\unicode{x02264}</mo><mn>4</mn></mrow></mrow></math></annotation>\n </semantics></math> showed that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>≤</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0009\" wiley:location=\"equation/jgt23177-math-0009.png\"><mrow><mrow><mi>r</mi><mo>\\unicode{x02264}</mo><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>π</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0010\" wiley:location=\"equation/jgt23177-math-0010.png\"><mrow><mrow><msub><mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\\unicode{x003C0}</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> is graphic, then there is a realization with a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0011\" wiley:location=\"equation/jgt23177-math-0011.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math>-factor whose edges can be partitioned into a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mi>r</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0012\" wiley:location=\"equation/jgt23177-math-0012.png\"><mrow><mrow><mrow><mo>(</mo><mrow><mi>k</mi><mo>\\unicode{x02212}</mo><mi>r</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math>-factor and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0013\" wiley:location=\"equation/jgt23177-math-0013.png\"><mrow><mrow><mi>r</mi></mrow></mrow></math></annotation>\n </semantics></math> edge-disjoint 1-factors. We improve this to any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>≤</mo>\n \n <mi>m</mi>\n \n <mi>i</mi>\n \n <mi>n</mi>\n \n <mrow>\n <mo>{</mo>\n \n <mfenced>\n <mfrac>\n <mrow>\n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>5</mn>\n </mrow>\n \n <mn>3</mn>\n </mfrac>\n </mfenced>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0014\" wiley:location=\"equation/jgt23177-math-0014.png\"><mrow><mrow><mi>r</mi><mo>\\unicode{x02264}</mo><mi>m</mi><mi>i</mi><mi>n</mi><mrow><mo stretchy=\"true\">{</mo><mfenced close=\"\\unicode{x02309}\" open=\"\\unicode{x02308}\"><mfrac><mrow><mi>k</mi><mo>\\unicode{x0002B}</mo><mn>5</mn></mrow><mn>3</mn></mfrac></mfenced><mo>,</mo><mi>k</mi><mo stretchy=\"true\">}</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math>. In 1978, Brualdi and then Busch et al. in 2012, conjectured that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>=</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0015\" wiley:location=\"equation/jgt23177-math-0015.png\"><mrow><mrow><mi>r</mi><mo>=</mo><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math>. The conjecture is still open for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>6</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0016\" wiley:location=\"equation/jgt23177-math-0016.png\"><mrow><mrow><mi>k</mi><mo>\\unicode{x02265}</mo><mn>6</mn></mrow></mrow></math></annotation>\n </semantics></math>. However, Busch et al. showed the conjecture is true when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>≤</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0017\" wiley:location=\"equation/jgt23177-math-0017.png\"><mrow><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\\unicode{x02264}</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>\\unicode{x0002B}</mo><mn>1</mn></mrow></mrow></math></annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>≥</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0018\" wiley:location=\"equation/jgt23177-math-0018.png\"><mrow><mrow><msub><mi>d</mi><mi>n</mi></msub><mo>\\unicode{x02265}</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>\\unicode{x0002B}</mo><mi>k</mi><mo>\\unicode{x02212}</mo><mn>2</mn></mrow></mrow></math></annotation>\n </semantics></math>. We explore this conjecture by first developing new tools that generalize edge-exchanges. With these new tools, we can drop the assumption <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>π</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0019\" wiley:location=\"equation/jgt23177-math-0019.png\"><mrow><mrow><msub><mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\\unicode{x003C0}</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> is graphic and show that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>+</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n \n <mo>≥</mo>\n \n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>+</mo>\n \n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0020\" wiley:location=\"equation/jgt23177-math-0020.png\"><mrow><mrow><msub><mi>d</mi><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\\unicode{x02212}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\\unicode{x0002B}</mo><mi>k</mi></mrow></msub><mo>\\unicode{x02265}</mo><msub><mi>d</mi><mn>1</mn></msub><mo>\\unicode{x02212}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\\unicode{x0002B}</mo><mi>k</mi><mo>\\unicode{x02212}</mo><mn>1</mn><mo>,</mo></mrow></mrow></math></annotation>\n </semantics></math> then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>π</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0021\" wiley:location=\"equation/jgt23177-math-0021.png\"><mrow><mrow><mi>\\unicode{x003C0}</mi></mrow></mrow></math></annotation>\n </semantics></math> has a realization with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0022\" wiley:location=\"equation/jgt23177-math-0022.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math> edge-disjoint 1-factors. From this we confirm the conjecture when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>≥</mo>\n \n <mfrac>\n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0023\" wiley:location=\"equation/jgt23177-math-0023.png\"><mrow><mrow><msub><mi>d</mi><mi>n</mi></msub><mo>\\unicode{x02265}</mo><mfrac><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\\unicode{x0002B}</mo><mi>k</mi><mo>\\unicode{x02212}</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mrow></mrow></math></annotation>\n </semantics></math> or when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>π</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0024\" wiley:location=\"equation/jgt23177-math-0024.png\"><mrow><mrow><msub><mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\\unicode{x003C0}</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> is graphic and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>≤</mo>\n \n <mi>m</mi>\n \n <mi>a</mi>\n \n <mi>x</mi>\n \n <mo>{</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n \n <mo>+</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>−</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0025\" wiley:location=\"equation/jgt23177-math-0025.png\"><mrow><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\\unicode{x02264}</mo><mi>m</mi><mi>a</mi><mi>x</mi><mo stretchy=\"false\">{</mo><mrow><mi>n</mi><mo>\\unicode{x02215}</mo><mn>2</mn><mo>\\unicode{x0002B}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\\unicode{x02212}</mo><mi>k</mi><mo>,</mo><mrow><mo>(</mo><mi>n</mi><mo>\\unicode{x0002B}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>\\unicode{x02215}</mo><mn>2</mn></mrow><mo stretchy=\"false\">}</mo></mrow></mrow></math></annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"463-491"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23177","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a nonincreasing degree sequence with even . In 1974, Kundu showed that if is graphic, then some realization of has a -factor. For , Busch et al. and later Seacrest for showed that if and is graphic, then there is a realization with a -factor whose edges can be partitioned into a -factor and edge-disjoint 1-factors. We improve this to any . In 1978, Brualdi and then Busch et al. in 2012, conjectured that . The conjecture is still open for . However, Busch et al. showed the conjecture is true when or . We explore this conjecture by first developing new tools that generalize edge-exchanges. With these new tools, we can drop the assumption is graphic and show that if then has a realization with edge-disjoint 1-factors. From this we confirm the conjecture when or when is graphic and .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .