求助PDF
{"title":"关于图表,拉姆齐擅长写大部头的书","authors":"Meng Liu, Yusheng Li","doi":"10.1002/jgt.23193","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0001\" wiley:location=\"equation/jgt23193-math-0001.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math> be a graph and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0002\" wiley:location=\"equation/jgt23193-math-0002.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math> a connected graph. Then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0003\" wiley:location=\"equation/jgt23193-math-0003.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math> is said to be <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0004\" wiley:location=\"equation/jgt23193-math-0004.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math>-good if the Ramsey number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0005\" wiley:location=\"equation/jgt23193-math-0005.png\"><mrow><mrow><mi>r</mi><mrow><mo>(</mo><mrow><mi>G</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> is equal to the general lower bound <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>H</mi>\n \n <mo>∣</mo>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mi>s</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0006\" wiley:location=\"equation/jgt23193-math-0006.png\"><mrow><mrow><mrow><mo>(</mo><mrow><mi>\\unicode{x003C7}</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>\\unicode{x02212}</mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mo>\\unicode{x02223}</mo><mi>H</mi><mo>\\unicode{x02223}</mo><mo>\\unicode{x02212}</mo><mn>1</mn></mrow><mo>)</mo></mrow><mo>\\unicode{x0002B}</mo><mi>s</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0007\" wiley:location=\"equation/jgt23193-math-0007.png\"><mrow><mrow><mi>\\unicode{x003C7}</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>s</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0008\" wiley:location=\"equation/jgt23193-math-0008.png\"><mrow><mrow><mi>s</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> are the chromatic number and the chromatic surplus of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0009\" wiley:location=\"equation/jgt23193-math-0009.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math>, respectively. For a fixed graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0010\" wiley:location=\"equation/jgt23193-math-0010.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0011\" wiley:location=\"equation/jgt23193-math-0011.png\"><mrow><mrow><mi>\\unicode{x003C7}</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>k</mi><mo>\\unicode{x0002B}</mo><mn>1</mn><mo>\\unicode{x02265}</mo><mn>2</mn></mrow></mrow></math></annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>s</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0012\" wiley:location=\"equation/jgt23193-math-0012.png\"><mrow><mrow><mi>s</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></mrow></math></annotation>\n </semantics></math>, it is shown that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>p</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0013\" wiley:location=\"equation/jgt23193-math-0013.png\"><mrow><mrow><mi>p</mi><mo>\\unicode{x02265}</mo><mn>2</mn></mrow></mrow></math></annotation>\n </semantics></math>, then large <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>p</mi>\n </msub>\n \n <mo>+</mo>\n \n <mi>n</mi>\n \n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0014\" wiley:location=\"equation/jgt23193-math-0014.png\"><mrow><mrow><msub><mi>K</mi><mi>p</mi></msub><mo>\\unicode{x0002B}</mo><mi>n</mi><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math> are <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0015\" wiley:location=\"equation/jgt23193-math-0015.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math>-good if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0016\" wiley:location=\"equation/jgt23193-math-0016.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math> is a subgraph of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>M</mi>\n \n <mi>m</mi>\n </msub>\n \n <mo>+</mo>\n \n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>m</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0017\" wiley:location=\"equation/jgt23193-math-0017.png\"><mrow><mrow><msub><mi>M</mi><mi>m</mi></msub><mo>\\unicode{x0002B}</mo><msub><mi>K</mi><mrow><mi>k</mi><mo>\\unicode{x02212}</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> for some <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0018\" wiley:location=\"equation/jgt23193-math-0018.png\"><mrow><mrow><mi>m</mi></mrow></mrow></math></annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>M</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0019\" wiley:location=\"equation/jgt23193-math-0019.png\"><mrow><mrow><msub><mi>M</mi><mi>m</mi></msub></mrow></mrow></math></annotation>\n </semantics></math> is a matching of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0020\" wiley:location=\"equation/jgt23193-math-0020.png\"><mrow><mrow><mi>m</mi></mrow></mrow></math></annotation>\n </semantics></math> edges. We also give conditions for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0021\" wiley:location=\"equation/jgt23193-math-0021.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math> with respect to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0022\" wiley:location=\"equation/jgt23193-math-0022.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math>-goodness of large <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <mi>n</mi>\n \n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0023\" wiley:location=\"equation/jgt23193-math-0023.png\"><mrow><mrow><msub><mi>K</mi><mn>1</mn></msub><mo>\\unicode{x0002B}</mo><mi>n</mi><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"543-559"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On graphs for which large books are Ramsey good\",\"authors\":\"Meng Liu, Yusheng Li\",\"doi\":\"10.1002/jgt.23193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0001\\\" wiley:location=\\\"equation/jgt23193-math-0001.png\\\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\\n </semantics></math> be a graph and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0002\\\" wiley:location=\\\"equation/jgt23193-math-0002.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math> a connected graph. Then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0003\\\" wiley:location=\\\"equation/jgt23193-math-0003.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math> is said to be <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0004\\\" wiley:location=\\\"equation/jgt23193-math-0004.png\\\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\\n </semantics></math>-good if the Ramsey number <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <mi>H</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0005\\\" wiley:location=\\\"equation/jgt23193-math-0005.png\\\"><mrow><mrow><mi>r</mi><mrow><mo>(</mo><mrow><mi>G</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> is equal to the general lower bound <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>χ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>H</mi>\\n \\n <mo>∣</mo>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mi>s</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0006\\\" wiley:location=\\\"equation/jgt23193-math-0006.png\\\"><mrow><mrow><mrow><mo>(</mo><mrow><mi>\\\\unicode{x003C7}</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>\\\\unicode{x02212}</mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mo>\\\\unicode{x02223}</mo><mi>H</mi><mo>\\\\unicode{x02223}</mo><mo>\\\\unicode{x02212}</mo><mn>1</mn></mrow><mo>)</mo></mrow><mo>\\\\unicode{x0002B}</mo><mi>s</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>χ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0007\\\" wiley:location=\\\"equation/jgt23193-math-0007.png\\\"><mrow><mrow><mi>\\\\unicode{x003C7}</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>s</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0008\\\" wiley:location=\\\"equation/jgt23193-math-0008.png\\\"><mrow><mrow><mi>s</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> are the chromatic number and the chromatic surplus of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0009\\\" wiley:location=\\\"equation/jgt23193-math-0009.png\\\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\\n </semantics></math>, respectively. For a fixed graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0010\\\" wiley:location=\\\"equation/jgt23193-math-0010.png\\\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>χ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0011\\\" wiley:location=\\\"equation/jgt23193-math-0011.png\\\"><mrow><mrow><mi>\\\\unicode{x003C7}</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>k</mi><mo>\\\\unicode{x0002B}</mo><mn>1</mn><mo>\\\\unicode{x02265}</mo><mn>2</mn></mrow></mrow></math></annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>s</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0012\\\" wiley:location=\\\"equation/jgt23193-math-0012.png\\\"><mrow><mrow><mi>s</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></mrow></math></annotation>\\n </semantics></math>, it is shown that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>p</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0013\\\" wiley:location=\\\"equation/jgt23193-math-0013.png\\\"><mrow><mrow><mi>p</mi><mo>\\\\unicode{x02265}</mo><mn>2</mn></mrow></mrow></math></annotation>\\n </semantics></math>, then large <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>p</mi>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <mi>n</mi>\\n \\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0014\\\" wiley:location=\\\"equation/jgt23193-math-0014.png\\\"><mrow><mrow><msub><mi>K</mi><mi>p</mi></msub><mo>\\\\unicode{x0002B}</mo><mi>n</mi><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math> are <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0015\\\" wiley:location=\\\"equation/jgt23193-math-0015.png\\\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\\n </semantics></math>-good if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0016\\\" wiley:location=\\\"equation/jgt23193-math-0016.png\\\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\\n </semantics></math> is a subgraph of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>M</mi>\\n \\n <mi>m</mi>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>m</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0017\\\" wiley:location=\\\"equation/jgt23193-math-0017.png\\\"><mrow><mrow><msub><mi>M</mi><mi>m</mi></msub><mo>\\\\unicode{x0002B}</mo><msub><mi>K</mi><mrow><mi>k</mi><mo>\\\\unicode{x02212}</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> for some <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0018\\\" wiley:location=\\\"equation/jgt23193-math-0018.png\\\"><mrow><mrow><mi>m</mi></mrow></mrow></math></annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>M</mi>\\n \\n <mi>m</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0019\\\" wiley:location=\\\"equation/jgt23193-math-0019.png\\\"><mrow><mrow><msub><mi>M</mi><mi>m</mi></msub></mrow></mrow></math></annotation>\\n </semantics></math> is a matching of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0020\\\" wiley:location=\\\"equation/jgt23193-math-0020.png\\\"><mrow><mrow><mi>m</mi></mrow></mrow></math></annotation>\\n </semantics></math> edges. We also give conditions for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0021\\\" wiley:location=\\\"equation/jgt23193-math-0021.png\\\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\\n </semantics></math> with respect to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0022\\\" wiley:location=\\\"equation/jgt23193-math-0022.png\\\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\\n </semantics></math>-goodness of large <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <mi>n</mi>\\n \\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0023\\\" wiley:location=\\\"equation/jgt23193-math-0023.png\\\"><mrow><mrow><msub><mi>K</mi><mn>1</mn></msub><mo>\\\\unicode{x0002B}</mo><mi>n</mi><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 3\",\"pages\":\"543-559\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23193\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23193","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用