Basilica: New canonical decomposition in matching theory

IF 0.9 3区 数学 Q2 MATHEMATICS
Nanao Kita
{"title":"Basilica: New canonical decomposition in matching theory","authors":"Nanao Kita","doi":"10.1002/jgt.23190","DOIUrl":null,"url":null,"abstract":"<p>In matching theory, one of the most fundamental and classical branches of combinatorics, <i>canonical decompositions</i> of graphs are powerful and versatile tools that form the basis of this theory. However, the abilities of the known canonical decompositions, that is, the <i>Dulmage–Mendelsohn</i>, <i>Kotzig–Lovász</i>, and <i>Gallai–Edmonds</i> decompositions, are limited because they are only applicable to particular classes of graphs, such as bipartite graphs, or they are too sparse to provide sufficient information. To overcome these limitations, we introduce a new canonical decomposition that is applicable to all graphs and provides much finer information. This decomposition also provides the answer to the longstanding absence of a canonical decomposition that is nontrivially applicable to general graphs with perfect matchings. We focus on the notion of <i>factor-components</i> as the fundamental building blocks of a graph; through the factor-components, our new canonical decomposition states how a graph is organized and how it contains all the maximum matchings. The main results that constitute our new theory are the following: (i) a canonical partial order over the set of factor-components, which describes how a graph is constructed from its factor-components; (ii) a generalization of the Kotzig–Lovász decomposition, which shows the inner structure of each factor-component in the context of the entire graph; and (iii) a canonically described interrelationship between (i) and (ii), which integrates these two results into a unified theory of a canonical decomposition. These results are obtained in a self-contained way, and our proof of the generalized Kotzig–Lovász decomposition contains a shortened and self-contained proof of the classical counterpart.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"508-542"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23190","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23190","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In matching theory, one of the most fundamental and classical branches of combinatorics, canonical decompositions of graphs are powerful and versatile tools that form the basis of this theory. However, the abilities of the known canonical decompositions, that is, the Dulmage–Mendelsohn, Kotzig–Lovász, and Gallai–Edmonds decompositions, are limited because they are only applicable to particular classes of graphs, such as bipartite graphs, or they are too sparse to provide sufficient information. To overcome these limitations, we introduce a new canonical decomposition that is applicable to all graphs and provides much finer information. This decomposition also provides the answer to the longstanding absence of a canonical decomposition that is nontrivially applicable to general graphs with perfect matchings. We focus on the notion of factor-components as the fundamental building blocks of a graph; through the factor-components, our new canonical decomposition states how a graph is organized and how it contains all the maximum matchings. The main results that constitute our new theory are the following: (i) a canonical partial order over the set of factor-components, which describes how a graph is constructed from its factor-components; (ii) a generalization of the Kotzig–Lovász decomposition, which shows the inner structure of each factor-component in the context of the entire graph; and (iii) a canonically described interrelationship between (i) and (ii), which integrates these two results into a unified theory of a canonical decomposition. These results are obtained in a self-contained way, and our proof of the generalized Kotzig–Lovász decomposition contains a shortened and self-contained proof of the classical counterpart.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信