{"title":"On graphs for which large books are Ramsey good","authors":"Meng Liu, Yusheng Li","doi":"10.1002/jgt.23193","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0001\" wiley:location=\"equation/jgt23193-math-0001.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math> be a graph and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0002\" wiley:location=\"equation/jgt23193-math-0002.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math> a connected graph. Then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0003\" wiley:location=\"equation/jgt23193-math-0003.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math> is said to be <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0004\" wiley:location=\"equation/jgt23193-math-0004.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math>-good if the Ramsey number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0005\" wiley:location=\"equation/jgt23193-math-0005.png\"><mrow><mrow><mi>r</mi><mrow><mo>(</mo><mrow><mi>G</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> is equal to the general lower bound <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>H</mi>\n \n <mo>∣</mo>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mi>s</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0006\" wiley:location=\"equation/jgt23193-math-0006.png\"><mrow><mrow><mrow><mo>(</mo><mrow><mi>\\unicode{x003C7}</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>\\unicode{x02212}</mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mo>\\unicode{x02223}</mo><mi>H</mi><mo>\\unicode{x02223}</mo><mo>\\unicode{x02212}</mo><mn>1</mn></mrow><mo>)</mo></mrow><mo>\\unicode{x0002B}</mo><mi>s</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0007\" wiley:location=\"equation/jgt23193-math-0007.png\"><mrow><mrow><mi>\\unicode{x003C7}</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>s</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0008\" wiley:location=\"equation/jgt23193-math-0008.png\"><mrow><mrow><mi>s</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> are the chromatic number and the chromatic surplus of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0009\" wiley:location=\"equation/jgt23193-math-0009.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math>, respectively. For a fixed graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0010\" wiley:location=\"equation/jgt23193-math-0010.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0011\" wiley:location=\"equation/jgt23193-math-0011.png\"><mrow><mrow><mi>\\unicode{x003C7}</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>k</mi><mo>\\unicode{x0002B}</mo><mn>1</mn><mo>\\unicode{x02265}</mo><mn>2</mn></mrow></mrow></math></annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>s</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0012\" wiley:location=\"equation/jgt23193-math-0012.png\"><mrow><mrow><mi>s</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></mrow></math></annotation>\n </semantics></math>, it is shown that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>p</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0013\" wiley:location=\"equation/jgt23193-math-0013.png\"><mrow><mrow><mi>p</mi><mo>\\unicode{x02265}</mo><mn>2</mn></mrow></mrow></math></annotation>\n </semantics></math>, then large <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>p</mi>\n </msub>\n \n <mo>+</mo>\n \n <mi>n</mi>\n \n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0014\" wiley:location=\"equation/jgt23193-math-0014.png\"><mrow><mrow><msub><mi>K</mi><mi>p</mi></msub><mo>\\unicode{x0002B}</mo><mi>n</mi><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math> are <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0015\" wiley:location=\"equation/jgt23193-math-0015.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math>-good if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0016\" wiley:location=\"equation/jgt23193-math-0016.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math> is a subgraph of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>M</mi>\n \n <mi>m</mi>\n </msub>\n \n <mo>+</mo>\n \n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>m</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0017\" wiley:location=\"equation/jgt23193-math-0017.png\"><mrow><mrow><msub><mi>M</mi><mi>m</mi></msub><mo>\\unicode{x0002B}</mo><msub><mi>K</mi><mrow><mi>k</mi><mo>\\unicode{x02212}</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> for some <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0018\" wiley:location=\"equation/jgt23193-math-0018.png\"><mrow><mrow><mi>m</mi></mrow></mrow></math></annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>M</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0019\" wiley:location=\"equation/jgt23193-math-0019.png\"><mrow><mrow><msub><mi>M</mi><mi>m</mi></msub></mrow></mrow></math></annotation>\n </semantics></math> is a matching of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0020\" wiley:location=\"equation/jgt23193-math-0020.png\"><mrow><mrow><mi>m</mi></mrow></mrow></math></annotation>\n </semantics></math> edges. We also give conditions for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0021\" wiley:location=\"equation/jgt23193-math-0021.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math> with respect to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0022\" wiley:location=\"equation/jgt23193-math-0022.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math>-goodness of large <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <mi>n</mi>\n \n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0023\" wiley:location=\"equation/jgt23193-math-0023.png\"><mrow><mrow><msub><mi>K</mi><mn>1</mn></msub><mo>\\unicode{x0002B}</mo><mi>n</mi><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"543-559"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23193","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a graph and a connected graph. Then is said to be -good if the Ramsey number is equal to the general lower bound , where and are the chromatic number and the chromatic surplus of , respectively. For a fixed graph with and , it is shown that if , then large are -good if and only if is a subgraph of for some , where is a matching of edges. We also give conditions for with respect to -goodness of large .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .