On graphs for which large books are Ramsey good

IF 0.9 3区 数学 Q2 MATHEMATICS
Meng Liu, Yusheng Li
{"title":"On graphs for which large books are Ramsey good","authors":"Meng Liu,&nbsp;Yusheng Li","doi":"10.1002/jgt.23193","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0001\" wiley:location=\"equation/jgt23193-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> be a graph and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0002\" wiley:location=\"equation/jgt23193-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> a connected graph. Then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0003\" wiley:location=\"equation/jgt23193-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is said to be <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0004\" wiley:location=\"equation/jgt23193-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-good if the Ramsey number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0005\" wiley:location=\"equation/jgt23193-math-0005.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is equal to the general lower bound <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>H</mi>\n \n <mo>∣</mo>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mi>s</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0006\" wiley:location=\"equation/jgt23193-math-0006.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;\\unicode{x003C7}&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;\\unicode{x02223}&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;\\unicode{x02223}&lt;/mo&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0007\" wiley:location=\"equation/jgt23193-math-0007.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;\\unicode{x003C7}&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>s</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0008\" wiley:location=\"equation/jgt23193-math-0008.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> are the chromatic number and the chromatic surplus of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0009\" wiley:location=\"equation/jgt23193-math-0009.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, respectively. For a fixed graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0010\" wiley:location=\"equation/jgt23193-math-0010.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0011\" wiley:location=\"equation/jgt23193-math-0011.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;\\unicode{x003C7}&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;\\unicode{x02265}&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>s</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0012\" wiley:location=\"equation/jgt23193-math-0012.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, it is shown that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>p</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0013\" wiley:location=\"equation/jgt23193-math-0013.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;\\unicode{x02265}&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, then large <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>p</mi>\n </msub>\n \n <mo>+</mo>\n \n <mi>n</mi>\n \n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0014\" wiley:location=\"equation/jgt23193-math-0014.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> are <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0015\" wiley:location=\"equation/jgt23193-math-0015.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-good if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0016\" wiley:location=\"equation/jgt23193-math-0016.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is a subgraph of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>M</mi>\n \n <mi>m</mi>\n </msub>\n \n <mo>+</mo>\n \n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>m</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0017\" wiley:location=\"equation/jgt23193-math-0017.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> for some <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0018\" wiley:location=\"equation/jgt23193-math-0018.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>M</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0019\" wiley:location=\"equation/jgt23193-math-0019.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is a matching of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0020\" wiley:location=\"equation/jgt23193-math-0020.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> edges. We also give conditions for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0021\" wiley:location=\"equation/jgt23193-math-0021.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> with respect to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0022\" wiley:location=\"equation/jgt23193-math-0022.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-goodness of large <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <mi>n</mi>\n \n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0023\" wiley:location=\"equation/jgt23193-math-0023.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"543-559"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23193","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0001" wiley:location="equation/jgt23193-math-0001.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> be a graph and H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0002" wiley:location="equation/jgt23193-math-0002.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> a connected graph. Then H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0003" wiley:location="equation/jgt23193-math-0003.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> is said to be G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0004" wiley:location="equation/jgt23193-math-0004.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> -good if the Ramsey number r ( G , H ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0005" wiley:location="equation/jgt23193-math-0005.png"><mrow><mrow><mi>r</mi><mrow><mo>(</mo><mrow><mi>G</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow></mrow></mrow></math> is equal to the general lower bound ( χ ( G ) 1 ) ( H 1 ) + s ( G ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0006" wiley:location="equation/jgt23193-math-0006.png"><mrow><mrow><mrow><mo>(</mo><mrow><mi>\unicode{x003C7}</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mo>\unicode{x02223}</mo><mi>H</mi><mo>\unicode{x02223}</mo><mo>\unicode{x02212}</mo><mn>1</mn></mrow><mo>)</mo></mrow><mo>\unicode{x0002B}</mo><mi>s</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math> , where χ ( G ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0007" wiley:location="equation/jgt23193-math-0007.png"><mrow><mrow><mi>\unicode{x003C7}</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math> and s ( G ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0008" wiley:location="equation/jgt23193-math-0008.png"><mrow><mrow><mi>s</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math> are the chromatic number and the chromatic surplus of G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0009" wiley:location="equation/jgt23193-math-0009.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> , respectively. For a fixed graph G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0010" wiley:location="equation/jgt23193-math-0010.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> with χ ( G ) = k + 1 2 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0011" wiley:location="equation/jgt23193-math-0011.png"><mrow><mrow><mi>\unicode{x003C7}</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>k</mi><mo>\unicode{x0002B}</mo><mn>1</mn><mo>\unicode{x02265}</mo><mn>2</mn></mrow></mrow></math> and s ( G ) = 1 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0012" wiley:location="equation/jgt23193-math-0012.png"><mrow><mrow><mi>s</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></mrow></math> , it is shown that if p 2 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0013" wiley:location="equation/jgt23193-math-0013.png"><mrow><mrow><mi>p</mi><mo>\unicode{x02265}</mo><mn>2</mn></mrow></mrow></math> , then large K p + n H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0014" wiley:location="equation/jgt23193-math-0014.png"><mrow><mrow><msub><mi>K</mi><mi>p</mi></msub><mo>\unicode{x0002B}</mo><mi>n</mi><mi>H</mi></mrow></mrow></math> are G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0015" wiley:location="equation/jgt23193-math-0015.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> -good if and only if G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0016" wiley:location="equation/jgt23193-math-0016.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> is a subgraph of M m + K k 1 ( m ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0017" wiley:location="equation/jgt23193-math-0017.png"><mrow><mrow><msub><mi>M</mi><mi>m</mi></msub><mo>\unicode{x0002B}</mo><msub><mi>K</mi><mrow><mi>k</mi><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></mrow></math> for some m <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0018" wiley:location="equation/jgt23193-math-0018.png"><mrow><mrow><mi>m</mi></mrow></mrow></math> , where M m <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0019" wiley:location="equation/jgt23193-math-0019.png"><mrow><mrow><msub><mi>M</mi><mi>m</mi></msub></mrow></mrow></math> is a matching of m <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0020" wiley:location="equation/jgt23193-math-0020.png"><mrow><mrow><mi>m</mi></mrow></mrow></math> edges. We also give conditions for G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0021" wiley:location="equation/jgt23193-math-0021.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> with respect to G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0022" wiley:location="equation/jgt23193-math-0022.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> -goodness of large K 1 + n H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0023" wiley:location="equation/jgt23193-math-0023.png"><mrow><mrow><msub><mi>K</mi><mn>1</mn></msub><mo>\unicode{x0002B}</mo><mi>n</mi><mi>H</mi></mrow></mrow></math> .

关于图表,拉姆齐擅长写大部头的书
Let G&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0001" wiley:location="equation/jgt23193-math-0001.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;是一个图形和H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0002" wiley:location="equation/jgt23193-math-0002.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;连通图。然后H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0003" wiley:location="equation/jgt23193-math-0003.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;据称是G&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0004" wiley:location="equation/jgt23193-math-0004.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;-如果拉姆齐数r (G)H) &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0005”威利:位置= "方程/ jgt23193 -数学- 0005. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; r&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mrow&gt; & lt; mi&gt; G&lt; / mi&gt; & lt; mo&gt;, & lt; / mo&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; / mrow&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;等于一般下界(χ (G))−1)(∣h∣−1) + s (G) &lt;math xmlns=“http://www.w3.org/1998/Math/MathML”altimg = " urn: x-wiley: 03649024:媒体:jgt23193: jgt23193 -数学- 0006“威利:位置= "方程/ jgt23193 -数学- 0006。 png”&gt; &lt; mrow&gt &lt; mrow&gt; &lt mi&gt; s&lt / mi&gt; &lt; mrow&gt &lt; mo&gt (&lt; / mo&gt &lt; mi&gt; G&lt / mi&gt; &lt; mo&gt) &lt; / mo&gt; &lt / mrow&gt; &lt mo&gt; = &lt; / mo&gt &lt; mn&gt; 1&lt / mn&gt; &lt; / mrow&gt &lt; / mrow&gt; &lt / math&gt;,它显示,如果p≥2 &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0013”魏:地方= "方程/ jgt23193-math-0013.png &gt; &lt; mrow&gt &lt; mrow&gt; &lt mi&gt; p&lt / mi&gt; &lt; mo&gt \ unicode {x02265 &lt; / mo&gt; &lt mn&gt; 2&lt; / mn&gt &lt; / mrow&gt; &lt / mrow&gt; &lt / math&gt;,math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0014”魏:地方= "方程/ jgt23193-math-0014.png &gt; &lt; mrow&gt &lt; mrow&gt; &lt msub&gt; &lt; mi&gt K&lt; / mi&gt; &lt mi&gt; p&lt / mi&gt; &lt / msub&gt; &lt; mo&gt \ unicode {x0002B &lt; / mo&gt; &lt mi&gt; n&lt; / mi&gt &lt; mi&gt; H&lt / mi&gt; &lt; / mrow&gt &lt; / mrow&gt; &lt / math&gt;are G&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0015" wiley:location="equation/jgt23193-math-0015.png"&gt;&lt;mrow&gt;&lt;-good if and only if G&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0016" wiley:location="equation/jgt23193-math-0016.png"&gt;&lt;mrow&gt;&lt;是M M + K K−1的子图(m) &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23193:jgt23193- math0017 ”魏:地方= "方程/ jgt23193-math-0017.png &gt; &lt; mrow&gt &lt; mrow&gt; &lt msub&gt; &lt; mi&gt M&lt; / mi&gt; &lt mi&gt; M&lt / mi&gt; &lt / msub&gt; &lt; mo&gt \ unicode {x0002B &lt; / mo&gt; &lt; msub&gt &lt; mi&gt; K&lt / mi&gt; &lt; mrow&gt &lt; mi&gt; K&lt / mi&gt; &lt; mo&gt \ unicode {x02212 &lt; / mo&gt; &lt mn&gt; 1&lt; / mn&gt &lt; / mrow&gt; &lt / msub&gt; &lt mrow&gt; &lt; mo&gt (&lt; / mo&gt &lt; mi&gt; M&lt / mi&gt; &lt; mo&gt) &lt; / mo&gt; &lt / mrow&gt; &lt; / mrow&gt &lt; / mrow&gt; &lt / math&gt;对于一些m&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0018" wiley:location="equation/jgt23193-math-0018.png"&gt;&lt;mrow&gt;&lt;,其中M &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23193:jgt23193-math-0019”魏:地方= "方程/ jgt23193-math-0019.png &gt; &lt; mrow&gt &lt; mrow&gt; &lt msub&gt; &lt; mi&gt M&lt; / mi&gt; &lt mi&gt; M&lt; / mi&gt &lt; / msub&gt; &lt / mrow&gt; &lt; / mrow&gt &lt / math&gt;是m &lt;math xmlns="http://www.w3的匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信