On the Constructor–Blocker game

IF 0.9 3区 数学 Q2 MATHEMATICS
József Balogh, Ce Chen, Sean English
{"title":"On the Constructor–Blocker game","authors":"József Balogh,&nbsp;Ce Chen,&nbsp;Sean English","doi":"10.1002/jgt.23186","DOIUrl":null,"url":null,"abstract":"<p>In the Constructor–Blocker game, two players, Constructor and Blocker, alternately claim unclaimed edges of the complete graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0001\" wiley:location=\"equation/jgt23186-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. For given graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0002\" wiley:location=\"equation/jgt23186-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0003\" wiley:location=\"equation/jgt23186-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, Constructor can only claim edges that leave her graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0004\" wiley:location=\"equation/jgt23186-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-free, while Blocker has no restrictions. Constructor's goal is to build as many copies of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0005\" wiley:location=\"equation/jgt23186-math-0005.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> as she can, while Blocker attempts to minimize the number of copies of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0006\" wiley:location=\"equation/jgt23186-math-0006.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> in Constructor's graph. The game ends once there are no more edges that Constructor can claim. The score <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>g</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0007\" wiley:location=\"equation/jgt23186-math-0007.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> of the game is the number of copies of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0008\" wiley:location=\"equation/jgt23186-math-0008.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> in Constructor's graph at the end of the game when both players play optimally and Constructor plays first. In this paper, we extend results of Patkós, Stojaković and Vizer on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>g</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0009\" wiley:location=\"equation/jgt23186-math-0009.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> to many pairs of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0010\" wiley:location=\"equation/jgt23186-math-0010.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0011\" wiley:location=\"equation/jgt23186-math-0011.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>: We determine <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>g</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0012\" wiley:location=\"equation/jgt23186-math-0012.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>K</mi>\n \n <mi>r</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0013\" wiley:location=\"equation/jgt23186-math-0013.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>&gt;</mo>\n \n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0014\" wiley:location=\"equation/jgt23186-math-0014.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;\\unicode{x003C7}&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;\\unicode{x0003E}&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, also when both <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0015\" wiley:location=\"equation/jgt23186-math-0015.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0016\" wiley:location=\"equation/jgt23186-math-0016.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> are odd cycles, using Szemerédi's Regularity Lemma. We also obtain bounds of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>g</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0017\" wiley:location=\"equation/jgt23186-math-0017.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>K</mi>\n \n <mn>3</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0018\" wiley:location=\"equation/jgt23186-math-0018.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0019\" wiley:location=\"equation/jgt23186-math-0019.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"492-507"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23186","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the Constructor–Blocker game, two players, Constructor and Blocker, alternately claim unclaimed edges of the complete graph K n <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0001" wiley:location="equation/jgt23186-math-0001.png"><mrow><mrow><msub><mi>K</mi><mi>n</mi></msub></mrow></mrow></math> . For given graphs F <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0002" wiley:location="equation/jgt23186-math-0002.png"><mrow><mrow><mi>F</mi></mrow></mrow></math> and H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0003" wiley:location="equation/jgt23186-math-0003.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> , Constructor can only claim edges that leave her graph F <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0004" wiley:location="equation/jgt23186-math-0004.png"><mrow><mrow><mi>F</mi></mrow></mrow></math> -free, while Blocker has no restrictions. Constructor's goal is to build as many copies of H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0005" wiley:location="equation/jgt23186-math-0005.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> as she can, while Blocker attempts to minimize the number of copies of H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0006" wiley:location="equation/jgt23186-math-0006.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> in Constructor's graph. The game ends once there are no more edges that Constructor can claim. The score g ( n , H , F ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0007" wiley:location="equation/jgt23186-math-0007.png"><mrow><mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>F</mi></mrow><mo>)</mo></mrow></mrow></mrow></math> of the game is the number of copies of H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0008" wiley:location="equation/jgt23186-math-0008.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> in Constructor's graph at the end of the game when both players play optimally and Constructor plays first. In this paper, we extend results of Patkós, Stojaković and Vizer on g ( n , H , F ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0009" wiley:location="equation/jgt23186-math-0009.png"><mrow><mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>F</mi></mrow><mo>)</mo></mrow></mrow></mrow></math> to many pairs of H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0010" wiley:location="equation/jgt23186-math-0010.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> and F <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0011" wiley:location="equation/jgt23186-math-0011.png"><mrow><mrow><mi>F</mi></mrow></mrow></math> : We determine g ( n , H , F ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0012" wiley:location="equation/jgt23186-math-0012.png"><mrow><mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>F</mi></mrow><mo>)</mo></mrow></mrow></mrow></math> when H = K r <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0013" wiley:location="equation/jgt23186-math-0013.png"><mrow><mrow><mi>H</mi><mo>=</mo><msub><mi>K</mi><mi>r</mi></msub></mrow></mrow></math> and χ ( F ) > r <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0014" wiley:location="equation/jgt23186-math-0014.png"><mrow><mrow><mi>\unicode{x003C7}</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow><mo>\unicode{x0003E}</mo><mi>r</mi></mrow></mrow></math> , also when both H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0015" wiley:location="equation/jgt23186-math-0015.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> and F <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0016" wiley:location="equation/jgt23186-math-0016.png"><mrow><mrow><mi>F</mi></mrow></mrow></math> are odd cycles, using Szemerédi's Regularity Lemma. We also obtain bounds of g ( n , H , F ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0017" wiley:location="equation/jgt23186-math-0017.png"><mrow><mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>F</mi></mrow><mo>)</mo></mrow></mrow></mrow></math> when H = K 3 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0018" wiley:location="equation/jgt23186-math-0018.png"><mrow><mrow><mi>H</mi><mo>=</mo><msub><mi>K</mi><mn>3</mn></msub></mrow></mrow></math> and F = K 2 , 2 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0019" wiley:location="equation/jgt23186-math-0019.png"><mrow><mrow><mi>F</mi><mo>=</mo><msub><mi>K</mi><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub></mrow></mrow></math> .

在建造者-拦阻者游戏中
在建造者-拦阻者游戏中,两个玩家,建造者和拦阻者,交替声明完全图的未声明边K n &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0001”威利:位置= "方程/ jgt23186 -数学- 0001. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; msub&gt; & lt; mi&gt; K&lt; / mi&gt; & lt; mi&gt; n&lt; / mi&gt; & lt; / msub&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;. 对于给定的图形F&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0002" wiley:location="equation/jgt23186-math-0002.png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;and H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0003" wiley:location="equation/jgt23186-math-0003.png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;, Constructor只能声明离开她的图的边F&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0004" wiley:location="equation/jgt23186-math-0004.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;免费,而Blocker没有限制。构造器的目标是构建尽可能多的H&lt; math的副本xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0005" wiley:location="equation/jgt23186-math-0005.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;当Blocker尝试尽量减少H&lt; math的副本数量时,xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0006" wiley:location="equation/jgt23186-math-0006.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;在构造函数的图中。游戏结束时,没有更多的边构造函数可以要求。分数g (n, H,F) &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0007”威利:位置= "方程/ jgt23186 -数学- 0007. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; g&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mrow&gt; & lt; mi&gt; n&lt; / mi&gt; & lt; mo&gt;, & lt; / mo&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; mo&gt;, & lt; / mo&gt; & lt; mi&gt; F&lt; / mi&gt; & lt; / mrow&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;游戏的H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0008" wiley:location="equation/jgt23186-math-0008.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;;在游戏结束时,两个玩家都处于最佳状态,而构造函数先玩。 本文推广了Patkós、stojakoviki和Vizer关于g (n, H,F) &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0009”威利:位置= "方程/ jgt23186 -数学- 0009. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; g&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mrow&gt; & lt; mi&gt; n&lt; / mi&gt; & lt; mo&gt;, & lt; / mo&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; mo&gt;, & lt; / mo&gt; & lt; mi&gt; F&lt; / mi&gt; & lt; / mrow&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;多对H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0010" wiley:location="equation/jgt23186-math-0010.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;and F&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0011" wiley:location="equation/jgt23186-math-0011.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;:我们确定g (n, H,F) &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0012”威利:位置= "方程/ jgt23186 -数学- 0012. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; g&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mrow&gt; & lt; mi&gt; n&lt; / mi&gt; & lt; mo&gt;, & lt; / mo&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; mo&gt;, & lt; / mo&gt; & lt; mi&gt; F&lt; / mi&gt; & lt; / mrow&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;当H = K r &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0013”威利:位置= "方程/ jgt23186 -数学- 0013. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; mo&gt; = & lt; / mo&gt; & lt; msub&gt; & lt; mi&gt; K&lt; / mi&gt; & lt; mi&gt; r&lt; / mi&gt; & lt; / msub&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;和χ (F) &gt;r&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186- jgt23186-math-0014.png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; " wiley:location="equation/jgt23186-math-0014.png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; \unicode{x003C7}&lt;/ jgt23186; jgt23186- jgt23186- jgt23186- jgt23186- jgt23186- jgt23186- jgt23186- jgt23186- jgt23186- mrow&gt;&lt; \unicode{x003C7}&lt;/ mrow&gt;&lt; (&lt;/ mrow&gt;&lt;mrow&gt;&lt; mrow&gt;&lt; (&lt;/ mrow&gt;&lt;) mrow&gt;&lt; (&lt;/ mrow&gt;&lt;) mrow&gt;&lt; (&lt;/ mrow&gt;&lt;) mrow&gt;&lt; (mrow&gt;&lt;) mrow&gt;&lt; (mrow&gt;&lt;) mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;,也当H &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0015" wiley:location="equation/jgt23186-math-0015。 png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;and F&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0016" wiley:location="equation/jgt23186-math-0016.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;是奇循环,利用szemersamedi的正则引理。我们也得到了g (n, H,F) &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0017”威利:位置= "方程/ jgt23186 -数学- 0017. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; g&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mrow&gt; & lt; mi&gt; n&lt; / mi&gt; & lt; mo&gt;, & lt; / mo&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; mo&gt;, & lt; / mo&gt; & lt; mi&gt; F&lt; / mi&gt; & lt; / mrow&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;当H = K 3 &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0018”威利:位置= "方程/ jgt23186 -数学- 0018. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; mo&gt; = & lt; / mo&gt; & lt; msub&gt; & lt; mi&gt; K&lt; / mi&gt; & lt; mn&gt; 3 & lt; / mn&gt; & lt; / msub&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;F = k2,2 &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23186:jgt23186-math-0019”威利:位置= "方程/ jgt23186 -数学- 0019. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; F&lt; / mi&gt; & lt; mo&gt; = & lt; / mo&gt; & lt; msub&gt; & lt; mi&gt; K&lt; / mi&gt; & lt; mrow&gt; & lt; mn&gt; 2 & lt; / mn&gt; & lt; mo&gt; & lt; / mo&gt; & lt; mn&gt; 2 & lt; / mn&gt; & lt; / mrow&gt; & lt; / msub&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信