无限图的Nash-Williams方向猜想

IF 0.9 3区 数学 Q2 MATHEMATICS
Amena Assem
{"title":"无限图的Nash-Williams方向猜想","authors":"Amena Assem","doi":"10.1002/jgt.23192","DOIUrl":null,"url":null,"abstract":"<p>In 1960 Nash-Williams proved that an edge-connectivity of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0001\" wiley:location=\"equation/jgt23192-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is sufficient for a finite graph to have a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0002\" wiley:location=\"equation/jgt23192-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-arc-connected orientation. He then conjectured that the same is true for infinite graphs. In 2016, Thomassen, using his own results on the auxiliary <i>lifting graph</i>, proved that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>8</mn>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0003\" wiley:location=\"equation/jgt23192-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-edge-connected infinite graphs admit a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0004\" wiley:location=\"equation/jgt23192-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-arc-connected orientation. Here we improve this result for the class of one-ended locally finite graphs and show that an edge-connectivity of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>4</mn>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0005\" wiley:location=\"equation/jgt23192-math-0005.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is enough in that case. Crucial to this improvement are results presented in a separate paper, by the same author of this paper, on the key concept of the lifting graph, extending results by Ok, Richter, and Thomassen.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"608-619"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23192","citationCount":"0","resultStr":"{\"title\":\"Towards Nash-Williams orientation conjecture for infinite graphs\",\"authors\":\"Amena Assem\",\"doi\":\"10.1002/jgt.23192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 1960 Nash-Williams proved that an edge-connectivity of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0001\\\" wiley:location=\\\"equation/jgt23192-math-0001.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> is sufficient for a finite graph to have a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0002\\\" wiley:location=\\\"equation/jgt23192-math-0002.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-arc-connected orientation. He then conjectured that the same is true for infinite graphs. In 2016, Thomassen, using his own results on the auxiliary <i>lifting graph</i>, proved that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>8</mn>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0003\\\" wiley:location=\\\"equation/jgt23192-math-0003.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-edge-connected infinite graphs admit a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0004\\\" wiley:location=\\\"equation/jgt23192-math-0004.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-arc-connected orientation. Here we improve this result for the class of one-ended locally finite graphs and show that an edge-connectivity of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>4</mn>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0005\\\" wiley:location=\\\"equation/jgt23192-math-0005.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> is enough in that case. Crucial to this improvement are results presented in a separate paper, by the same author of this paper, on the key concept of the lifting graph, extending results by Ok, Richter, and Thomassen.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 3\",\"pages\":\"608-619\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23192\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23192\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23192","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

1960年,Nash-Williams证明了2 k的边连通性<;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0001”威利:位置= "方程/ jgt23192 -数学- 0001. png”祝辞& lt; mrow> & lt; mrow> & lt; mn> 2 & lt; / mn> & lt; mi> k< / mi> & lt; / mrow> & lt; / mrow> & lt; / math>对于有限图来说,k< math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0002" wiley:location="equation/jgt23192-math-0002.png"><mrow><mrow>< /mrow></mrow></ mrow></mrow></ mrow></mrow></math>;-arc-connected取向。然后他推测无限图也是如此。2016年,托马森利用他自己在辅助提升图上的研究结果,证明了8 k<; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0003" wiley:location="equation/jgt23192-math-0003.png"><mrow><mrow>< mrow><mrow> k</ mrow></mrow></ mrow></mrow></ mrow></mrow></ mrow></math>;​-边连接无限图承认k<; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0004" wiley:location="equation/jgt23192-math-0004.png"><mrow>< /mrow></mrow></ mrow></mrow></ mrow></mrow></ mrow></math>;-arc-connected取向。这里,我们对一类单端局部有限图改进了这一结果,并证明了4 k的边连通性<;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0005”威利:位置= "方程/ jgt23192 -数学- 0005. png”祝辞& lt; mrow> & lt; mrow> & lt; mn> 4 & lt; / mn> & lt; mi> k< / mi> & lt; / mrow> & lt; / mrow> & lt; / math>在这种情况下就足够了。这一改进的关键是本文同一作者在另一篇论文中提出的关于提升图关键概念的结果,扩展了Ok, Richter和Thomassen的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Towards Nash-Williams orientation conjecture for infinite graphs

Towards Nash-Williams orientation conjecture for infinite graphs

In 1960 Nash-Williams proved that an edge-connectivity of 2 k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0001" wiley:location="equation/jgt23192-math-0001.png"><mrow><mrow><mn>2</mn><mi>k</mi></mrow></mrow></math> is sufficient for a finite graph to have a k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0002" wiley:location="equation/jgt23192-math-0002.png"><mrow><mrow><mi>k</mi></mrow></mrow></math> -arc-connected orientation. He then conjectured that the same is true for infinite graphs. In 2016, Thomassen, using his own results on the auxiliary lifting graph, proved that 8 k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0003" wiley:location="equation/jgt23192-math-0003.png"><mrow><mrow><mn>8</mn><mi>k</mi></mrow></mrow></math> -edge-connected infinite graphs admit a k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0004" wiley:location="equation/jgt23192-math-0004.png"><mrow><mrow><mi>k</mi></mrow></mrow></math> -arc-connected orientation. Here we improve this result for the class of one-ended locally finite graphs and show that an edge-connectivity of 4 k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0005" wiley:location="equation/jgt23192-math-0005.png"><mrow><mrow><mn>4</mn><mi>k</mi></mrow></mrow></math> is enough in that case. Crucial to this improvement are results presented in a separate paper, by the same author of this paper, on the key concept of the lifting graph, extending results by Ok, Richter, and Thomassen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信