超稳定张拉整体和柯林常数ν \unicode{x003BD}

IF 0.9 3区 数学 Q2 MATHEMATICS
Ryoshun Oba, Shin-ichi Tanigawa
{"title":"超稳定张拉整体和柯林常数ν \\unicode{x003BD}","authors":"Ryoshun Oba,&nbsp;Shin-ichi Tanigawa","doi":"10.1002/jgt.23188","DOIUrl":null,"url":null,"abstract":"<p>A super stable tensegrity introduced by Connelly in 1982 is a globally rigid discrete structure made from stiff bars and struts connected by cables with tension. We introduce the super stability number of a multigraph as the maximum dimension that a multigraph can be realized as a super stable tensegrity, and show that it equals the Colin de Verdière number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ν</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0002\" wiley:location=\"equation/jgt23188-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;\\unicode{x003BD}&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> minus one. As a corollary we obtain a combinatorial characterization of multigraphs that can be realized as three-dimensional super stable tensegrities. We also show that, for any fixed <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0003\" wiley:location=\"equation/jgt23188-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, there is an infinite family of 3-regular graphs that can be realized as <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0004\" wiley:location=\"equation/jgt23188-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-dimensional injective super stable tensegrities.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"401-431"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23188","citationCount":"0","resultStr":"{\"title\":\"Super stable tensegrities and the Colin de Verdière number \\n \\n \\n \\n ν\\n \\n \\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0001\\\" wiley:location=\\\"equation/jgt23188-math-0001.png\\\"><mrow><mrow><mi>\\\\unicode{x003BD}</mi></mrow></mrow></math>\",\"authors\":\"Ryoshun Oba,&nbsp;Shin-ichi Tanigawa\",\"doi\":\"10.1002/jgt.23188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A super stable tensegrity introduced by Connelly in 1982 is a globally rigid discrete structure made from stiff bars and struts connected by cables with tension. We introduce the super stability number of a multigraph as the maximum dimension that a multigraph can be realized as a super stable tensegrity, and show that it equals the Colin de Verdière number <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ν</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0002\\\" wiley:location=\\\"equation/jgt23188-math-0002.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;\\\\unicode{x003BD}&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> minus one. As a corollary we obtain a combinatorial characterization of multigraphs that can be realized as three-dimensional super stable tensegrities. We also show that, for any fixed <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0003\\\" wiley:location=\\\"equation/jgt23188-math-0003.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>, there is an infinite family of 3-regular graphs that can be realized as <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0004\\\" wiley:location=\\\"equation/jgt23188-math-0004.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-dimensional injective super stable tensegrities.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 3\",\"pages\":\"401-431\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23188\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23188\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23188","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

超稳定张拉整体是Connelly于1982年提出的一种整体刚性离散结构,由刚性杆和支柱通过张力电缆连接而成。引入多图的超稳定数作为多图可以实现为超稳定张拉整体的最大维数;并显示它等于Colin de verdi数字ν <;math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0002" wiley:location="equation/jgt23188-math-0002.png"><mrow><mrow>< \unicode{x003BD}</ mrow></mrow></ mrow></mrow></ mrow></math>;- 1。作为一个推论,我们得到了多重图的组合表征,可以实现为三维超稳定张拉整体。我们还表明,对于任何固定的d<; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0003" wiley:location="equation/jgt23188-math-0003.png"><mrow><mrow>< d</ mrow></mrow></ mrow></mrow></math>;,存在一个无限的3正则图家族,可以实现为d<; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0004" wiley:location="equation/jgt23188-math-0004.png"><mrow><mrow>< d</ mrow></mrow></ mrow></mrow></ mrow></math>;维注入超稳定张拉整体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Super stable tensegrities and the Colin de Verdière number 
         
            
               
                  ν
               
            
             <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0001" wiley:location="equation/jgt23188-math-0001.png"><mrow><mrow><mi>\unicode{x003BD}</mi></mrow></mrow></math>

Super stable tensegrities and the Colin de Verdière number ν \unicode{x003BD}

A super stable tensegrity introduced by Connelly in 1982 is a globally rigid discrete structure made from stiff bars and struts connected by cables with tension. We introduce the super stability number of a multigraph as the maximum dimension that a multigraph can be realized as a super stable tensegrity, and show that it equals the Colin de Verdière number ν <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0002" wiley:location="equation/jgt23188-math-0002.png"><mrow><mrow><mi>\unicode{x003BD}</mi></mrow></mrow></math> minus one. As a corollary we obtain a combinatorial characterization of multigraphs that can be realized as three-dimensional super stable tensegrities. We also show that, for any fixed d <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0003" wiley:location="equation/jgt23188-math-0003.png"><mrow><mrow><mi>d</mi></mrow></mrow></math> , there is an infinite family of 3-regular graphs that can be realized as d <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23188:jgt23188-math-0004" wiley:location="equation/jgt23188-math-0004.png"><mrow><mrow><mi>d</mi></mrow></mrow></math> -dimensional injective super stable tensegrities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信