The complexity of the perfect matching-cut problem

IF 0.9 3区 数学 Q2 MATHEMATICS
Valentin Bouquet, Christophe Picouleau
{"title":"The complexity of the perfect matching-cut problem","authors":"Valentin Bouquet,&nbsp;Christophe Picouleau","doi":"10.1002/jgt.23167","DOIUrl":null,"url":null,"abstract":"<p>PERFECT MATCHING-CUT is the problem of deciding whether a graph has a perfect matching that contains an edge-cut. We show that this problem is NP-complete for planar graphs with maximum degree four, for planar graphs with girth five, for bipartite five-regular graphs, for graphs of diameter three, and for bipartite graphs of diameter four. We show that there exist polynomial-time algorithms for the following classes of graphs: claw-free, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23167:jgt23167-math-0001\" wiley:location=\"equation/jgt23167-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-free, diameter two, bipartite with diameter three, and graphs with bounded treewidth.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"432-462"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23167","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23167","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

PERFECT MATCHING-CUT is the problem of deciding whether a graph has a perfect matching that contains an edge-cut. We show that this problem is NP-complete for planar graphs with maximum degree four, for planar graphs with girth five, for bipartite five-regular graphs, for graphs of diameter three, and for bipartite graphs of diameter four. We show that there exist polynomial-time algorithms for the following classes of graphs: claw-free, P 5 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23167:jgt23167-math-0001" wiley:location="equation/jgt23167-math-0001.png"><mrow><mrow><msub><mi>P</mi><mn>5</mn></msub></mrow></mrow></math> -free, diameter two, bipartite with diameter three, and graphs with bounded treewidth.

Abstract Image

完美匹配割问题的复杂性
PERFECT matching -cut是判定一个图是否有一个包含边切的完美匹配的问题。我们证明了对于最大度为4的平面图,对于周长为5的平面图,对于二部五正则图,对于直径为3的图,以及对于直径为4的二部图,这个问题是np完全的。我们证明了对于以下几类图,存在多项式时间算法:claw-free,P 5 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23167:jgt23167-math-0001”威利:位置= "方程/ jgt23167 -数学- 0001. png”祝辞& lt; mrow> & lt; mrow> & lt; msub> & lt; mi>术中;/ mi> & lt; mn> 5 & lt; / mn> & lt; / msub> & lt; / mrow> & lt; / mrow> & lt; / math>自由,直径二,直径三的二部,以及有界树宽的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信