两个偶双环的非哈密顿笛卡尔积

IF 0.9 3区 数学 Q2 MATHEMATICS
Kenta Noguchi, Carol T. Zamfirescu
{"title":"两个偶双环的非哈密顿笛卡尔积","authors":"Kenta Noguchi,&nbsp;Carol T. Zamfirescu","doi":"10.1002/jgt.23185","DOIUrl":null,"url":null,"abstract":"<p>In this note it is proven that there exist infinitely many positive integers <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n </mrow>\n <annotation> $a$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n </mrow>\n <annotation> $b$</annotation>\n </semantics></math> such that the Cartesian product of a directed cycle of length <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n \n <mi>a</mi>\n </mrow>\n <annotation> $2a$</annotation>\n </semantics></math> and a directed cycle of length <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n \n <mi>b</mi>\n </mrow>\n <annotation> $2b$</annotation>\n </semantics></math> is non-Hamiltonian. In particular, the Cartesian product of an 880-dicycle and a 4368-dicycle is non-Hamiltonian. We also prove that there is no such graph on fewer than <span></span><math>\n <semantics>\n <mrow>\n <mn>880</mn>\n \n <mo>⋅</mo>\n \n <mn>4368</mn>\n \n <mo>=</mo>\n \n <mn>3</mn>\n \n <mo>,</mo>\n \n <mn>843</mn>\n \n <mo>,</mo>\n \n <mn>840</mn>\n </mrow>\n <annotation> $880\\cdot 4368=3,843,840$</annotation>\n </semantics></math> vertices, which is rather astonishing.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"368-373"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Hamiltonian Cartesian products of two even dicycles\",\"authors\":\"Kenta Noguchi,&nbsp;Carol T. Zamfirescu\",\"doi\":\"10.1002/jgt.23185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note it is proven that there exist infinitely many positive integers <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n </mrow>\\n <annotation> $a$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>b</mi>\\n </mrow>\\n <annotation> $b$</annotation>\\n </semantics></math> such that the Cartesian product of a directed cycle of length <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>a</mi>\\n </mrow>\\n <annotation> $2a$</annotation>\\n </semantics></math> and a directed cycle of length <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>b</mi>\\n </mrow>\\n <annotation> $2b$</annotation>\\n </semantics></math> is non-Hamiltonian. In particular, the Cartesian product of an 880-dicycle and a 4368-dicycle is non-Hamiltonian. We also prove that there is no such graph on fewer than <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>880</mn>\\n \\n <mo>⋅</mo>\\n \\n <mn>4368</mn>\\n \\n <mo>=</mo>\\n \\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <mn>843</mn>\\n \\n <mo>,</mo>\\n \\n <mn>840</mn>\\n </mrow>\\n <annotation> $880\\\\cdot 4368=3,843,840$</annotation>\\n </semantics></math> vertices, which is rather astonishing.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 2\",\"pages\":\"368-373\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23185\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23185","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本论文证明了存在无穷多个正整数 a $a$ 和 b $b$ ,使得长度为 2 a $2a$ 的有向循环和长度为 2 b $2b$ 的有向循环的笛卡儿积为非哈密尔顿积。特别是,880-圆周和 4368-圆周的笛卡儿积为非哈密尔顿积。我们还证明了在少于 880 ⋅ 4368 = 3 , 843 , 840 $880\cdot 4368=3,843,840$ 的顶点上不存在这样的图,这是相当惊人的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Hamiltonian Cartesian products of two even dicycles

In this note it is proven that there exist infinitely many positive integers a $a$ and b $b$ such that the Cartesian product of a directed cycle of length 2 a $2a$ and a directed cycle of length 2 b $2b$ is non-Hamiltonian. In particular, the Cartesian product of an 880-dicycle and a 4368-dicycle is non-Hamiltonian. We also prove that there is no such graph on fewer than 880 4368 = 3 , 843 , 840 $880\cdot 4368=3,843,840$ vertices, which is rather astonishing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信