James M. Shook
求助PDF
{"title":"关于强化Kundu k因子定理的一个猜想","authors":"James M. Shook","doi":"10.1002/jgt.23177","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>π</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0002\" wiley:location=\"equation/jgt23177-math-0002.png\"><mrow><mrow><mi>\\unicode{x003C0}</mi><mo>=</mo><mrow><mo>(</mo><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>,</mo><mo>\\unicode{x02026}</mo><mo>,</mo><msub><mi>d</mi><mi>n</mi></msub></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> be a nonincreasing degree sequence with even <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0003\" wiley:location=\"equation/jgt23177-math-0003.png\"><mrow><mrow><mi>n</mi></mrow></mrow></math></annotation>\n </semantics></math>. In 1974, Kundu showed that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>π</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>−</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0004\" wiley:location=\"equation/jgt23177-math-0004.png\"><mrow><mrow><msub><mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\\unicode{x003C0}</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\\unicode{x02212}</mo><mi>k</mi><mo>,</mo><mo>\\unicode{x02026}</mo><mo>,</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\\unicode{x02212}</mo><mi>k</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> is graphic, then some realization of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>π</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0005\" wiley:location=\"equation/jgt23177-math-0005.png\"><mrow><mrow><mi>\\unicode{x003C0}</mi></mrow></mrow></math></annotation>\n </semantics></math> has a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0006\" wiley:location=\"equation/jgt23177-math-0006.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math>-factor. For <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0007\" wiley:location=\"equation/jgt23177-math-0007.png\"><mrow><mrow><mi>r</mi><mo>\\unicode{x02264}</mo><mn>2</mn></mrow></mrow></math></annotation>\n </semantics></math>, Busch et al. and later Seacrest for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>≤</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0008\" wiley:location=\"equation/jgt23177-math-0008.png\"><mrow><mrow><mi>r</mi><mo>\\unicode{x02264}</mo><mn>4</mn></mrow></mrow></math></annotation>\n </semantics></math> showed that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>≤</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0009\" wiley:location=\"equation/jgt23177-math-0009.png\"><mrow><mrow><mi>r</mi><mo>\\unicode{x02264}</mo><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>π</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0010\" wiley:location=\"equation/jgt23177-math-0010.png\"><mrow><mrow><msub><mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\\unicode{x003C0}</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> is graphic, then there is a realization with a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0011\" wiley:location=\"equation/jgt23177-math-0011.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math>-factor whose edges can be partitioned into a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mi>r</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0012\" wiley:location=\"equation/jgt23177-math-0012.png\"><mrow><mrow><mrow><mo>(</mo><mrow><mi>k</mi><mo>\\unicode{x02212}</mo><mi>r</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math>-factor and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0013\" wiley:location=\"equation/jgt23177-math-0013.png\"><mrow><mrow><mi>r</mi></mrow></mrow></math></annotation>\n </semantics></math> edge-disjoint 1-factors. We improve this to any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>≤</mo>\n \n <mi>m</mi>\n \n <mi>i</mi>\n \n <mi>n</mi>\n \n <mrow>\n <mo>{</mo>\n \n <mfenced>\n <mfrac>\n <mrow>\n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>5</mn>\n </mrow>\n \n <mn>3</mn>\n </mfrac>\n </mfenced>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0014\" wiley:location=\"equation/jgt23177-math-0014.png\"><mrow><mrow><mi>r</mi><mo>\\unicode{x02264}</mo><mi>m</mi><mi>i</mi><mi>n</mi><mrow><mo stretchy=\"true\">{</mo><mfenced close=\"\\unicode{x02309}\" open=\"\\unicode{x02308}\"><mfrac><mrow><mi>k</mi><mo>\\unicode{x0002B}</mo><mn>5</mn></mrow><mn>3</mn></mfrac></mfenced><mo>,</mo><mi>k</mi><mo stretchy=\"true\">}</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math>. In 1978, Brualdi and then Busch et al. in 2012, conjectured that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>=</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0015\" wiley:location=\"equation/jgt23177-math-0015.png\"><mrow><mrow><mi>r</mi><mo>=</mo><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math>. The conjecture is still open for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>6</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0016\" wiley:location=\"equation/jgt23177-math-0016.png\"><mrow><mrow><mi>k</mi><mo>\\unicode{x02265}</mo><mn>6</mn></mrow></mrow></math></annotation>\n </semantics></math>. However, Busch et al. showed the conjecture is true when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>≤</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0017\" wiley:location=\"equation/jgt23177-math-0017.png\"><mrow><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\\unicode{x02264}</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>\\unicode{x0002B}</mo><mn>1</mn></mrow></mrow></math></annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>≥</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0018\" wiley:location=\"equation/jgt23177-math-0018.png\"><mrow><mrow><msub><mi>d</mi><mi>n</mi></msub><mo>\\unicode{x02265}</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>\\unicode{x0002B}</mo><mi>k</mi><mo>\\unicode{x02212}</mo><mn>2</mn></mrow></mrow></math></annotation>\n </semantics></math>. We explore this conjecture by first developing new tools that generalize edge-exchanges. With these new tools, we can drop the assumption <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>π</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0019\" wiley:location=\"equation/jgt23177-math-0019.png\"><mrow><mrow><msub><mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\\unicode{x003C0}</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> is graphic and show that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>+</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n \n <mo>≥</mo>\n \n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>+</mo>\n \n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0020\" wiley:location=\"equation/jgt23177-math-0020.png\"><mrow><mrow><msub><mi>d</mi><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\\unicode{x02212}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\\unicode{x0002B}</mo><mi>k</mi></mrow></msub><mo>\\unicode{x02265}</mo><msub><mi>d</mi><mn>1</mn></msub><mo>\\unicode{x02212}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\\unicode{x0002B}</mo><mi>k</mi><mo>\\unicode{x02212}</mo><mn>1</mn><mo>,</mo></mrow></mrow></math></annotation>\n </semantics></math> then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>π</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0021\" wiley:location=\"equation/jgt23177-math-0021.png\"><mrow><mrow><mi>\\unicode{x003C0}</mi></mrow></mrow></math></annotation>\n </semantics></math> has a realization with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0022\" wiley:location=\"equation/jgt23177-math-0022.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math> edge-disjoint 1-factors. From this we confirm the conjecture when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>≥</mo>\n \n <mfrac>\n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0023\" wiley:location=\"equation/jgt23177-math-0023.png\"><mrow><mrow><msub><mi>d</mi><mi>n</mi></msub><mo>\\unicode{x02265}</mo><mfrac><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\\unicode{x0002B}</mo><mi>k</mi><mo>\\unicode{x02212}</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mrow></mrow></math></annotation>\n </semantics></math> or when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>π</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0024\" wiley:location=\"equation/jgt23177-math-0024.png\"><mrow><mrow><msub><mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\\unicode{x003C0}</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> is graphic and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>≤</mo>\n \n <mi>m</mi>\n \n <mi>a</mi>\n \n <mi>x</mi>\n \n <mo>{</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n \n <mo>+</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>−</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0025\" wiley:location=\"equation/jgt23177-math-0025.png\"><mrow><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\\unicode{x02264}</mo><mi>m</mi><mi>a</mi><mi>x</mi><mo stretchy=\"false\">{</mo><mrow><mi>n</mi><mo>\\unicode{x02215}</mo><mn>2</mn><mo>\\unicode{x0002B}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\\unicode{x02212}</mo><mi>k</mi><mo>,</mo><mrow><mo>(</mo><mi>n</mi><mo>\\unicode{x0002B}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>\\unicode{x02215}</mo><mn>2</mn></mrow><mo stretchy=\"false\">}</mo></mrow></mrow></math></annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"463-491"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a conjecture that strengthens Kundu's \\n \\n \\n \\n k\\n \\n \\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0001\\\" wiley:location=\\\"equation/jgt23177-math-0001.png\\\"><mrow><mrow><mi>k</mi></mrow></mrow></math>\\n -factor theorem\",\"authors\":\"James M. Shook\",\"doi\":\"10.1002/jgt.23177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>π</mi>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>d</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>d</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0002\\\" wiley:location=\\\"equation/jgt23177-math-0002.png\\\"><mrow><mrow><mi>\\\\unicode{x003C0}</mi><mo>=</mo><mrow><mo>(</mo><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>,</mo><mo>\\\\unicode{x02026}</mo><mo>,</mo><msub><mi>d</mi><mi>n</mi></msub></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> be a nonincreasing degree sequence with even <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0003\\\" wiley:location=\\\"equation/jgt23177-math-0003.png\\\"><mrow><mrow><mi>n</mi></mrow></mrow></math></annotation>\\n </semantics></math>. In 1974, Kundu showed that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>D</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>π</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>d</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>d</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0004\\\" wiley:location=\\\"equation/jgt23177-math-0004.png\\\"><mrow><mrow><msub><mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\\\\unicode{x003C0}</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\\\\unicode{x02212}</mo><mi>k</mi><mo>,</mo><mo>\\\\unicode{x02026}</mo><mo>,</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\\\\unicode{x02212}</mo><mi>k</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> is graphic, then some realization of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>π</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0005\\\" wiley:location=\\\"equation/jgt23177-math-0005.png\\\"><mrow><mrow><mi>\\\\unicode{x003C0}</mi></mrow></mrow></math></annotation>\\n </semantics></math> has a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0006\\\" wiley:location=\\\"equation/jgt23177-math-0006.png\\\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\\n </semantics></math>-factor. For <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0007\\\" wiley:location=\\\"equation/jgt23177-math-0007.png\\\"><mrow><mrow><mi>r</mi><mo>\\\\unicode{x02264}</mo><mn>2</mn></mrow></mrow></math></annotation>\\n </semantics></math>, Busch et al. and later Seacrest for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0008\\\" wiley:location=\\\"equation/jgt23177-math-0008.png\\\"><mrow><mrow><mi>r</mi><mo>\\\\unicode{x02264}</mo><mn>4</mn></mrow></mrow></math></annotation>\\n </semantics></math> showed that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>≤</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0009\\\" wiley:location=\\\"equation/jgt23177-math-0009.png\\\"><mrow><mrow><mi>r</mi><mo>\\\\unicode{x02264}</mo><mi>k</mi></mrow></mrow></math></annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>D</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>π</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0010\\\" wiley:location=\\\"equation/jgt23177-math-0010.png\\\"><mrow><mrow><msub><mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\\\\unicode{x003C0}</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> is graphic, then there is a realization with a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0011\\\" wiley:location=\\\"equation/jgt23177-math-0011.png\\\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\\n </semantics></math>-factor whose edges can be partitioned into a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mi>r</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0012\\\" wiley:location=\\\"equation/jgt23177-math-0012.png\\\"><mrow><mrow><mrow><mo>(</mo><mrow><mi>k</mi><mo>\\\\unicode{x02212}</mo><mi>r</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math>-factor and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0013\\\" wiley:location=\\\"equation/jgt23177-math-0013.png\\\"><mrow><mrow><mi>r</mi></mrow></mrow></math></annotation>\\n </semantics></math> edge-disjoint 1-factors. We improve this to any <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>≤</mo>\\n \\n <mi>m</mi>\\n \\n <mi>i</mi>\\n \\n <mi>n</mi>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mfenced>\\n <mfrac>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mn>5</mn>\\n </mrow>\\n \\n <mn>3</mn>\\n </mfrac>\\n </mfenced>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0014\\\" wiley:location=\\\"equation/jgt23177-math-0014.png\\\"><mrow><mrow><mi>r</mi><mo>\\\\unicode{x02264}</mo><mi>m</mi><mi>i</mi><mi>n</mi><mrow><mo stretchy=\\\"true\\\">{</mo><mfenced close=\\\"\\\\unicode{x02309}\\\" open=\\\"\\\\unicode{x02308}\\\"><mfrac><mrow><mi>k</mi><mo>\\\\unicode{x0002B}</mo><mn>5</mn></mrow><mn>3</mn></mfrac></mfenced><mo>,</mo><mi>k</mi><mo stretchy=\\\"true\\\">}</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math>. In 1978, Brualdi and then Busch et al. in 2012, conjectured that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>=</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0015\\\" wiley:location=\\\"equation/jgt23177-math-0015.png\\\"><mrow><mrow><mi>r</mi><mo>=</mo><mi>k</mi></mrow></mrow></math></annotation>\\n </semantics></math>. The conjecture is still open for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>6</mn>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0016\\\" wiley:location=\\\"equation/jgt23177-math-0016.png\\\"><mrow><mrow><mi>k</mi><mo>\\\\unicode{x02265}</mo><mn>6</mn></mrow></mrow></math></annotation>\\n </semantics></math>. However, Busch et al. showed the conjecture is true when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>d</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </mfrac>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0017\\\" wiley:location=\\\"equation/jgt23177-math-0017.png\\\"><mrow><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\\\\unicode{x02264}</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>\\\\unicode{x0002B}</mo><mn>1</mn></mrow></mrow></math></annotation>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>d</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>≥</mo>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </mfrac>\\n \\n <mo>+</mo>\\n \\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0018\\\" wiley:location=\\\"equation/jgt23177-math-0018.png\\\"><mrow><mrow><msub><mi>d</mi><mi>n</mi></msub><mo>\\\\unicode{x02265}</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>\\\\unicode{x0002B}</mo><mi>k</mi><mo>\\\\unicode{x02212}</mo><mn>2</mn></mrow></mrow></math></annotation>\\n </semantics></math>. We explore this conjecture by first developing new tools that generalize edge-exchanges. With these new tools, we can drop the assumption <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>D</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>π</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0019\\\" wiley:location=\\\"equation/jgt23177-math-0019.png\\\"><mrow><mrow><msub><mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\\\\unicode{x003C0}</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> is graphic and show that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>d</mi>\\n \\n <mrow>\\n <msub>\\n <mi>d</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <msub>\\n <mi>d</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </msub>\\n \\n <mo>≥</mo>\\n \\n <msub>\\n <mi>d</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <msub>\\n <mi>d</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0020\\\" wiley:location=\\\"equation/jgt23177-math-0020.png\\\"><mrow><mrow><msub><mi>d</mi><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\\\\unicode{x02212}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\\\\unicode{x0002B}</mo><mi>k</mi></mrow></msub><mo>\\\\unicode{x02265}</mo><msub><mi>d</mi><mn>1</mn></msub><mo>\\\\unicode{x02212}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\\\\unicode{x0002B}</mo><mi>k</mi><mo>\\\\unicode{x02212}</mo><mn>1</mn><mo>,</mo></mrow></mrow></math></annotation>\\n </semantics></math> then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>π</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0021\\\" wiley:location=\\\"equation/jgt23177-math-0021.png\\\"><mrow><mrow><mi>\\\\unicode{x003C0}</mi></mrow></mrow></math></annotation>\\n </semantics></math> has a realization with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0022\\\" wiley:location=\\\"equation/jgt23177-math-0022.png\\\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\\n </semantics></math> edge-disjoint 1-factors. From this we confirm the conjecture when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>d</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>≥</mo>\\n \\n <mfrac>\\n <mrow>\\n <msub>\\n <mi>d</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0023\\\" wiley:location=\\\"equation/jgt23177-math-0023.png\\\"><mrow><mrow><msub><mi>d</mi><mi>n</mi></msub><mo>\\\\unicode{x02265}</mo><mfrac><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\\\\unicode{x0002B}</mo><mi>k</mi><mo>\\\\unicode{x02212}</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mrow></mrow></math></annotation>\\n </semantics></math> or when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>D</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>π</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0024\\\" wiley:location=\\\"equation/jgt23177-math-0024.png\\\"><mrow><mrow><msub><mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>\\\\unicode{x003C0}</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> is graphic and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>d</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mi>m</mi>\\n \\n <mi>a</mi>\\n \\n <mi>x</mi>\\n \\n <mo>{</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>∕</mo>\\n \\n <mn>2</mn>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>d</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>n</mi>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>d</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∕</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23177:jgt23177-math-0025\\\" wiley:location=\\\"equation/jgt23177-math-0025.png\\\"><mrow><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>\\\\unicode{x02264}</mo><mi>m</mi><mi>a</mi><mi>x</mi><mo stretchy=\\\"false\\\">{</mo><mrow><mi>n</mi><mo>\\\\unicode{x02215}</mo><mn>2</mn><mo>\\\\unicode{x0002B}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>\\\\unicode{x02212}</mo><mi>k</mi><mo>,</mo><mrow><mo>(</mo><mi>n</mi><mo>\\\\unicode{x0002B}</mo><msub><mi>d</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>\\\\unicode{x02215}</mo><mn>2</mn></mrow><mo stretchy=\\\"false\\\">}</mo></mrow></mrow></math></annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 3\",\"pages\":\"463-491\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23177\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23177","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用