计数电路双盖

IF 0.9 3区 数学 Q2 MATHEMATICS
Radek Hušek, Robert Šámal
{"title":"计数电路双盖","authors":"Radek Hušek,&nbsp;Robert Šámal","doi":"10.1002/jgt.23187","DOIUrl":null,"url":null,"abstract":"<p>We study a counting version of Cycle Double Cover Conjecture. We discuss why it is more interesting to count circuits (i.e., graphs isomorphic to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${C}_{k}$</annotation>\n </semantics></math> for some <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>) instead of cycles (graphs with all degrees even). We give an almost-exponential lower bound for graphs with a surface embedding of representativity at least 4. We also prove an exponential lower bound for planar graphs. We conjecture that any bridgeless cubic graph has at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mn>2</mn>\n \n <mrow>\n <mi>n</mi>\n \n <mo>/</mo>\n \n <mn>2</mn>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${2}^{n/2-1}$</annotation>\n </semantics></math> circuit double covers and we show an infinite class of graphs for which this bound is tight.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"374-395"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23187","citationCount":"0","resultStr":"{\"title\":\"Counting circuit double covers\",\"authors\":\"Radek Hušek,&nbsp;Robert Šámal\",\"doi\":\"10.1002/jgt.23187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a counting version of Cycle Double Cover Conjecture. We discuss why it is more interesting to count circuits (i.e., graphs isomorphic to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${C}_{k}$</annotation>\\n </semantics></math> for some <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>) instead of cycles (graphs with all degrees even). We give an almost-exponential lower bound for graphs with a surface embedding of representativity at least 4. We also prove an exponential lower bound for planar graphs. We conjecture that any bridgeless cubic graph has at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mn>2</mn>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>/</mo>\\n \\n <mn>2</mn>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> ${2}^{n/2-1}$</annotation>\\n </semantics></math> circuit double covers and we show an infinite class of graphs for which this bound is tight.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 2\",\"pages\":\"374-395\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23187\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23187\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23187","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了循环双盖猜想的一个计数版本。我们将讨论为什么计算电路更有趣(即,图同构于C k$ {C}_{k}$对于某些k$ k$)而不是循环(所有度为偶数的图)。我们给出了具有代表性的表面嵌入至少为4的图的近似指数下界。我们还证明了平面图的指数下界。我们推测任何无桥三次图至少有2n / 2−1 ${2}^{n/2-1}$电路双盖,我们给出了一个无限类图,这个图的界是紧的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Counting circuit double covers

Counting circuit double covers

We study a counting version of Cycle Double Cover Conjecture. We discuss why it is more interesting to count circuits (i.e., graphs isomorphic to C k ${C}_{k}$ for some k $k$ ) instead of cycles (graphs with all degrees even). We give an almost-exponential lower bound for graphs with a surface embedding of representativity at least 4. We also prove an exponential lower bound for planar graphs. We conjecture that any bridgeless cubic graph has at least 2 n / 2 1 ${2}^{n/2-1}$ circuit double covers and we show an infinite class of graphs for which this bound is tight.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信