Journal of Graph Theory最新文献

筛选
英文 中文
Proper edge colorings of planar graphs with rainbow C 4 ${C}_{4}$ -s 具有彩虹 C4 ${C}_{4}$-s 的平面图的适当边着色
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-08-05 DOI: 10.1002/jgt.23163
András Gyárfás, Ryan R. Martin, Miklós Ruszinkó, Gábor N. Sárközy
{"title":"Proper edge colorings of planar graphs with rainbow \u0000 \u0000 \u0000 \u0000 \u0000 C\u0000 4\u0000 \u0000 \u0000 \u0000 ${C}_{4}$\u0000 -s","authors":"András Gyárfás, Ryan R. Martin, Miklós Ruszinkó, Gábor N. Sárközy","doi":"10.1002/jgt.23163","DOIUrl":"10.1002/jgt.23163","url":null,"abstract":"<p>We call a proper edge coloring of a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> a B-coloring if every 4-cycle of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is colored with four different colors. Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>q</mi>\u0000 \u0000 <mi>B</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${q}_{B}(G)$</annotation>\u0000 </semantics></math> denote the smallest number of colors needed for a B-coloring of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>. Motivated by earlier papers on B-colorings, here we consider <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>q</mi>\u0000 \u0000 <mi>B</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${q}_{B}(G)$</annotation>\u0000 </semantics></math> for planar and outerplanar graphs in terms of the maximum degree <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mi>Δ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${rm{Delta }}={rm{Delta }}(G)$</annotation>\u0000 </sem","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"833-846"},"PeriodicalIF":0.9,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Sharp threshold for embedding balanced spanning trees in random geometric graphs” 对 "在随机几何图中嵌入平衡生成树的锐阈值 "的更正
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-31 DOI: 10.1002/jgt.23160
{"title":"Correction to “Sharp threshold for embedding balanced spanning trees in random geometric graphs”","authors":"","doi":"10.1002/jgt.23160","DOIUrl":"10.1002/jgt.23160","url":null,"abstract":"<p>A. Espuny Díaz, L. Lichev, D. Mitsche, and A. Wesolek, <i>Sharp threshold for embedding balanced spanning trees in random geometric graphs</i>, J. Graph Theory. <b>107</b> (2024), 107–125. https://doi.org/10.1002/jgt.23106</p><p>In the “ACKNOWLEDGMENTS” section, the text “The research leading to these results has been supported by the Carl-Zeiss-Foundation (Alberto Espuny Díaz), by grant GrHyDy ANR-20-CE40-0002, and by Fondecyt grant 1220174 (Dieter Mitsche) and by the Vanier Scholarship Program (Alexandra Wesolek).” was incorrect.</p><p>This should have read: “The research leading to these results has been supported by the Carl-Zeiss-Foundation and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through project no. 447645533 (A. Espuny Díaz), by grant GrHyDy ANR-20-CE40-0002 and by Fondecyt grant 1220174 (D. Mitsche) and by the Vanier Scholarship Program (A. Wesolek).”</p><p>The new Funding Information should read as follows:</p><p>Carl-Zeiss-Foundation.</p><p>Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project no. 447645533.</p><p>Grant GrHyDy ANR-20-CE40-0002.</p><p>Fondecyt, Grant/Award Number: 1220174.</p><p>The Vanier Scholarship Program.</p><p>We apologize for this error.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"847"},"PeriodicalIF":0.9,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23160","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the minimum number of arcs in 4-dicritical oriented graphs 论四临界定向图中的最小弧数
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-29 DOI: 10.1002/jgt.23159
Frédéric Havet, Lucas Picasarri-Arrieta, Clément Rambaud
{"title":"On the minimum number of arcs in 4-dicritical oriented graphs","authors":"Frédéric Havet,&nbsp;Lucas Picasarri-Arrieta,&nbsp;Clément Rambaud","doi":"10.1002/jgt.23159","DOIUrl":"10.1002/jgt.23159","url":null,"abstract":"&lt;p&gt;The dichromatic number &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $overrightarrow{chi }(D)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of a digraph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $D$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is the minimum number of colours needed to colour the vertices of a digraph such that each colour class induces an acyclic subdigraph. A digraph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $D$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-dicritical if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $overrightarrow{chi }(D)=k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and each proper subdigraph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $D$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; satisfies &lt;span&gt;&lt;/span&gt;&lt;mat","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"778-809"},"PeriodicalIF":0.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Counting triangles in regular graphs 计算规则图形中的三角形
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-25 DOI: 10.1002/jgt.23156
Jialin He, Xinmin Hou, Jie Ma, Tianying Xie
{"title":"Counting triangles in regular graphs","authors":"Jialin He,&nbsp;Xinmin Hou,&nbsp;Jie Ma,&nbsp;Tianying Xie","doi":"10.1002/jgt.23156","DOIUrl":"10.1002/jgt.23156","url":null,"abstract":"&lt;p&gt;In this paper, we investigate the minimum number of triangles, denoted by &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $t(n,k)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-vertex &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-regular graphs, where &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is an odd integer and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is an even integer. The well-known Andrásfai–Erdős–Sós Theorem has established that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;an","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"759-777"},"PeriodicalIF":0.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23156","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141771226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Counting rainbow triangles in edge-colored graphs 计算边色图中的彩虹三角形
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-23 DOI: 10.1002/jgt.23158
Xueliang Li, Bo Ning, Yongtang Shi, Shenggui Zhang
{"title":"Counting rainbow triangles in edge-colored graphs","authors":"Xueliang Li,&nbsp;Bo Ning,&nbsp;Yongtang Shi,&nbsp;Shenggui Zhang","doi":"10.1002/jgt.23158","DOIUrl":"10.1002/jgt.23158","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be an edge-colored graph on &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; vertices. The minimum color degree of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, denoted by &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;δ&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${delta }^{c}(G)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, is defined as the minimum number of colors assigned to the edges incident to a vertex in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. In 2013, Li proved that an edge-colored graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; on &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; vertices contains a rainbow triangle if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;δ&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/m","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"742-758"},"PeriodicalIF":0.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141771227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defective acyclic colorings of planar graphs 平面图形的缺陷非循环着色
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-21 DOI: 10.1002/jgt.23154
On-Hei Solomon Lo, Ben Seamone, Xuding Zhu
{"title":"Defective acyclic colorings of planar graphs","authors":"On-Hei Solomon Lo,&nbsp;Ben Seamone,&nbsp;Xuding Zhu","doi":"10.1002/jgt.23154","DOIUrl":"10.1002/jgt.23154","url":null,"abstract":"&lt;p&gt;This paper studies two variants of defective acyclic coloring of planar graphs. For a graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and a coloring &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;φ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $varphi $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, a 2-colored cycle (2CC) transversal is a subset &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${E}^{^{prime} }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $E(G)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; that intersects every 2-colored cycle. Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a positive integer. We denote by &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${m}_{k}(G)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; the minimum integer &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"729-741"},"PeriodicalIF":0.9,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cycles in 3-connected claw-free planar graphs and 4-connected planar graphs without 4-cycles 3连通无爪平面图和4连通无4周期平面图中的周期
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-21 DOI: 10.1002/jgt.23152
On-Hei Solomon Lo
{"title":"Cycles in 3-connected claw-free planar graphs and 4-connected planar graphs without 4-cycles","authors":"On-Hei Solomon Lo","doi":"10.1002/jgt.23152","DOIUrl":"10.1002/jgt.23152","url":null,"abstract":"&lt;p&gt;The cycle spectrum &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;CS&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${mathscr{CS}}(G)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of a graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is the set of the cycle lengths in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${mathscr{G}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a graph class. For any integer &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;≥&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $kge 3$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, define &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${f}_{{mathscr{G}}}(k)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; to be the least integer &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 \u0000 &lt;mo&gt;≥&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${k}^{^{prime} }ge k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"702-728"},"PeriodicalIF":0.9,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local version of Vizing's theorem for multigraphs 多图维京定理的局部版本
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-16 DOI: 10.1002/jgt.23155
Clinton T. Conley, Jan Grebík, Oleg Pikhurko
{"title":"Local version of Vizing's theorem for multigraphs","authors":"Clinton T. Conley,&nbsp;Jan Grebík,&nbsp;Oleg Pikhurko","doi":"10.1002/jgt.23155","DOIUrl":"10.1002/jgt.23155","url":null,"abstract":"&lt;p&gt;Extending a result of Christiansen, we prove that every multigraph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G=(V,E)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; admits a proper edge colouring &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ϕ&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mo&gt;…&lt;/mo&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;}&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $phi :Eto {1,2,ldots ,}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; which is &lt;i&gt;local&lt;/i&gt;, that is, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ϕ&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;⩽&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;max&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"693-701"},"PeriodicalIF":0.9,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23155","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141721055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability from graph symmetrization arguments in generalized Turán problems 广义图兰问题中图对称论证的稳定性
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-15 DOI: 10.1002/jgt.23151
Dániel Gerbner, Hilal Hama Karim
{"title":"Stability from graph symmetrization arguments in generalized Turán problems","authors":"Dániel Gerbner,&nbsp;Hilal Hama Karim","doi":"10.1002/jgt.23151","DOIUrl":"10.1002/jgt.23151","url":null,"abstract":"&lt;p&gt;Given graphs &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $F$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;ex&lt;/mtext&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $text{ex}(n,H,F)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; denotes the largest number of copies of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $F$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-free &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-vertex graphs. Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"681-692"},"PeriodicalIF":0.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicolor Turán numbers II: A generalization of the Ruzsa–Szemerédi theorem and new results on cliques and odd cycles 多色图兰数 II:鲁兹萨-塞梅雷迪定理的一般化以及关于小群和奇数循环的新结果
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-14 DOI: 10.1002/jgt.23147
Benedek Kovács, Zoltán Lóránt Nagy
{"title":"Multicolor Turán numbers II: A generalization of the Ruzsa–Szemerédi theorem and new results on cliques and odd cycles","authors":"Benedek Kovács,&nbsp;Zoltán Lóránt Nagy","doi":"10.1002/jgt.23147","DOIUrl":"10.1002/jgt.23147","url":null,"abstract":"&lt;p&gt;In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mtext&gt;ex&lt;/mtext&gt;\u0000 \u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${text{ex}}_{F}(n,G)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; denote the maximum number of edge-disjoint copies of a fixed simple graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $F$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; that can be placed on an &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-vertex ground set without forming a subgraph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; whose edges are from different &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $F$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-copies. The case when both &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $F$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"629-641"},"PeriodicalIF":0.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141649705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信