{"title":"Multicolor Turán numbers II: A generalization of the Ruzsa–Szemerédi theorem and new results on cliques and odd cycles","authors":"Benedek Kovács, Zoltán Lóránt Nagy","doi":"10.1002/jgt.23147","DOIUrl":"10.1002/jgt.23147","url":null,"abstract":"<p>In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mtext>ex</mtext>\u0000 \u0000 <mi>F</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>G</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${text{ex}}_{F}(n,G)$</annotation>\u0000 </semantics></math> denote the maximum number of edge-disjoint copies of a fixed simple graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math> that can be placed on an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-vertex ground set without forming a subgraph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> whose edges are from different <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math>-copies. The case when both <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"629-641"},"PeriodicalIF":0.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141649705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}