Journal of Graph Theory最新文献

筛选
英文 中文
Counting triangles in regular graphs 计算规则图形中的三角形
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-25 DOI: 10.1002/jgt.23156
Jialin He, Xinmin Hou, Jie Ma, Tianying Xie
{"title":"Counting triangles in regular graphs","authors":"Jialin He, Xinmin Hou, Jie Ma, Tianying Xie","doi":"10.1002/jgt.23156","DOIUrl":"10.1002/jgt.23156","url":null,"abstract":"<p>In this paper, we investigate the minimum number of triangles, denoted by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>t</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>k</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $t(n,k)$</annotation>\u0000 </semantics></math>, in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-vertex <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-regular graphs, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> is an odd integer and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math> is an even integer. The well-known Andrásfai–Erdős–Sós Theorem has established that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>t</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>k</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>></mo>\u0000 \u0000 <mn>0</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <an","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"759-777"},"PeriodicalIF":0.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23156","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141771226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Counting rainbow triangles in edge-colored graphs 计算边色图中的彩虹三角形
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-23 DOI: 10.1002/jgt.23158
Xueliang Li, Bo Ning, Yongtang Shi, Shenggui Zhang
{"title":"Counting rainbow triangles in edge-colored graphs","authors":"Xueliang Li, Bo Ning, Yongtang Shi, Shenggui Zhang","doi":"10.1002/jgt.23158","DOIUrl":"10.1002/jgt.23158","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> be an edge-colored graph on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> vertices. The minimum color degree of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>, denoted by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mi>δ</mi>\u0000 \u0000 <mi>c</mi>\u0000 </msup>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${delta }^{c}(G)$</annotation>\u0000 </semantics></math>, is defined as the minimum number of colors assigned to the edges incident to a vertex in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>. In 2013, Li proved that an edge-colored graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> vertices contains a rainbow triangle if <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mi>δ</mi>\u0000 \u0000 <mi>c</mi>\u0000 </msup>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </m","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"742-758"},"PeriodicalIF":0.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141771227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defective acyclic colorings of planar graphs 平面图形的缺陷非循环着色
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-21 DOI: 10.1002/jgt.23154
On-Hei Solomon Lo, Ben Seamone, Xuding Zhu
{"title":"Defective acyclic colorings of planar graphs","authors":"On-Hei Solomon Lo, Ben Seamone, Xuding Zhu","doi":"10.1002/jgt.23154","DOIUrl":"10.1002/jgt.23154","url":null,"abstract":"<p>This paper studies two variants of defective acyclic coloring of planar graphs. For a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> and a coloring <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>φ</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $varphi $</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>, a 2-colored cycle (2CC) transversal is a subset <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mi>E</mi>\u0000 \u0000 <mo>′</mo>\u0000 </msup>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${E}^{^{prime} }$</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>E</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $E(G)$</annotation>\u0000 </semantics></math> that intersects every 2-colored cycle. Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math> be a positive integer. We denote by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>m</mi>\u0000 \u0000 <mi>k</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${m}_{k}(G)$</annotation>\u0000 </semantics></math> the minimum integer <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"729-741"},"PeriodicalIF":0.9,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cycles in 3-connected claw-free planar graphs and 4-connected planar graphs without 4-cycles 3连通无爪平面图和4连通无4周期平面图中的周期
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-21 DOI: 10.1002/jgt.23152
On-Hei Solomon Lo
{"title":"Cycles in 3-connected claw-free planar graphs and 4-connected planar graphs without 4-cycles","authors":"On-Hei Solomon Lo","doi":"10.1002/jgt.23152","DOIUrl":"10.1002/jgt.23152","url":null,"abstract":"<p>The cycle spectrum <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>CS</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${mathscr{CS}}(G)$</annotation>\u0000 </semantics></math> of a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is the set of the cycle lengths in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>. Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${mathscr{G}}$</annotation>\u0000 </semantics></math> be a graph class. For any integer <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>3</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $kge 3$</annotation>\u0000 </semantics></math>, define <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>f</mi>\u0000 \u0000 <mi>G</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>k</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${f}_{{mathscr{G}}}(k)$</annotation>\u0000 </semantics></math> to be the least integer <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mi>k</mi>\u0000 \u0000 <mo>′</mo>\u0000 </msup>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${k}^{^{prime} }ge k$</annotation>\u0000 </semantics>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"702-728"},"PeriodicalIF":0.9,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local version of Vizing's theorem for multigraphs 多图维京定理的局部版本
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-16 DOI: 10.1002/jgt.23155
Clinton T. Conley, Jan Grebík, Oleg Pikhurko
{"title":"Local version of Vizing's theorem for multigraphs","authors":"Clinton T. Conley, Jan Grebík, Oleg Pikhurko","doi":"10.1002/jgt.23155","DOIUrl":"10.1002/jgt.23155","url":null,"abstract":"<p>Extending a result of Christiansen, we prove that every multigraph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>V</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>E</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G=(V,E)$</annotation>\u0000 </semantics></math> admits a proper edge colouring <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>ϕ</mi>\u0000 \u0000 <mo>:</mo>\u0000 \u0000 <mi>E</mi>\u0000 \u0000 <mo>→</mo>\u0000 \u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <mrow>\u0000 <mn>1</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mo>…</mo>\u0000 <mspace></mspace>\u0000 </mrow>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $phi :Eto {1,2,ldots ,}$</annotation>\u0000 </semantics></math> which is <i>local</i>, that is, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>ϕ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>e</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>⩽</mo>\u0000 \u0000 <mi>max</mi>\u0000 \u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <mrow>\u0000 <mi>d</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"693-701"},"PeriodicalIF":0.9,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23155","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141721055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability from graph symmetrization arguments in generalized Turán problems 广义图兰问题中图对称论证的稳定性
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-15 DOI: 10.1002/jgt.23151
Dániel Gerbner, Hilal Hama Karim
{"title":"Stability from graph symmetrization arguments in generalized Turán problems","authors":"Dániel Gerbner, Hilal Hama Karim","doi":"10.1002/jgt.23151","DOIUrl":"10.1002/jgt.23151","url":null,"abstract":"<p>Given graphs <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mtext>ex</mtext>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>H</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>F</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $text{ex}(n,H,F)$</annotation>\u0000 </semantics></math> denotes the largest number of copies of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math> in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math>-free <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-vertex graphs. Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>χ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>H</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo><</mo>\u0000 \u0000 <mi>χ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>F</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"681-692"},"PeriodicalIF":0.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicolor Turán numbers II: A generalization of the Ruzsa–Szemerédi theorem and new results on cliques and odd cycles 多色图兰数 II:鲁兹萨-塞梅雷迪定理的一般化以及关于小群和奇数循环的新结果
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-14 DOI: 10.1002/jgt.23147
Benedek Kovács, Zoltán Lóránt Nagy
{"title":"Multicolor Turán numbers II: A generalization of the Ruzsa–Szemerédi theorem and new results on cliques and odd cycles","authors":"Benedek Kovács, Zoltán Lóránt Nagy","doi":"10.1002/jgt.23147","DOIUrl":"10.1002/jgt.23147","url":null,"abstract":"<p>In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mtext>ex</mtext>\u0000 \u0000 <mi>F</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>G</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${text{ex}}_{F}(n,G)$</annotation>\u0000 </semantics></math> denote the maximum number of edge-disjoint copies of a fixed simple graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math> that can be placed on an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-vertex ground set without forming a subgraph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> whose edges are from different <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math>-copies. The case when both <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"629-641"},"PeriodicalIF":0.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141649705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thin edges in cubic braces 立方括号中的细边
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-14 DOI: 10.1002/jgt.23150
Xiaoling He, Fuliang Lu
{"title":"Thin edges in cubic braces","authors":"Xiaoling He, Fuliang Lu","doi":"10.1002/jgt.23150","DOIUrl":"10.1002/jgt.23150","url":null,"abstract":"<p>For a vertex set <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $X$</annotation>\u0000 </semantics></math> in a graph, the <i>edge cut</i> <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∂</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>X</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $partial (X)$</annotation>\u0000 </semantics></math> is the set of edges with exactly one end vertex in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $X$</annotation>\u0000 </semantics></math>. An edge cut <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∂</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>X</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $partial (X)$</annotation>\u0000 </semantics></math> is <i>tight</i> if every perfect matching of the graph contains exactly one edge in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∂</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>X</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $partial (X)$</annotation>\u0000 </semantics></math>. A matching covered bipartite graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is a <i>brace</i> if, for every tight cut <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∂</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>X</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"642-675"},"PeriodicalIF":0.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141650079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth rates of the bipartite Erdős–Gyárfás function 双向厄尔多斯-京法斯函数的增长率
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-11 DOI: 10.1002/jgt.23149
Xihe Li, Hajo Broersma, Ligong Wang
{"title":"Growth rates of the bipartite Erdős–Gyárfás function","authors":"Xihe Li, Hajo Broersma, Ligong Wang","doi":"10.1002/jgt.23149","DOIUrl":"10.1002/jgt.23149","url":null,"abstract":"<p>Given two graphs <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G,H$</annotation>\u0000 </semantics></math> and a positive integer <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $q$</annotation>\u0000 </semantics></math>, an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>q</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $(H,q)$</annotation>\u0000 </semantics></math>-coloring of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is an edge-coloring of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> such that every copy of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math> in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> receives at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $q$</annotation>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"597-628"},"PeriodicalIF":0.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23149","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximum odd induced subgraph of a graph concerning its chromatic number 关于图形色度数的最大奇数诱导子图
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-07-09 DOI: 10.1002/jgt.23148
Tao Wang, Baoyindureng Wu
{"title":"Maximum odd induced subgraph of a graph concerning its chromatic number","authors":"Tao Wang, Baoyindureng Wu","doi":"10.1002/jgt.23148","DOIUrl":"10.1002/jgt.23148","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>f</mi>\u0000 \u0000 <mi>o</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${f}_{o}(G)$</annotation>\u0000 </semantics></math> be the maximum order of an odd induced subgraph of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>. In 1992, Scott proposed a conjecture that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>f</mi>\u0000 \u0000 <mi>o</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mfrac>\u0000 <mi>n</mi>\u0000 \u0000 <mrow>\u0000 <mi>χ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mfrac>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${f}_{o}(G)ge frac{n}{chi (G)}$</annotation>\u0000 </semantics></math> for a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> of order <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> without isolated vertices, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>χ</mi>\u0000 \u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"578-596"},"PeriodicalIF":0.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信