{"title":"An extension of Nash-Williams and Tutte's Theorem","authors":"Xuqian Fang, Daqing Yang","doi":"10.1002/jgt.23189","DOIUrl":null,"url":null,"abstract":"<p>The celebrated Nash-Williams and Tutte's Theorem states that a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> contains <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> edge-disjoint spanning trees if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>ν</mi>\n \n <mi>f</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> ${\\nu }_{f}(G)\\ge k$</annotation>\n </semantics></math>, where\n\n </p><p>In this paper, we prove that, for integers <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n <annotation> $k\\ge 0$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n \n <mo>≥</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $d\\ge 1$</annotation>\n </semantics></math>, if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>ν</mi>\n \n <mi>f</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>></mo>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mfrac>\n <mrow>\n <mi>d</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>d</mi>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> ${\\nu }_{f}(G)\\gt k+\\frac{d-1}{d}$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> contains <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> edge-disjoint spanning trees and another forest <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>></mo>\n \n <mfrac>\n <mrow>\n <mi>d</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>d</mi>\n </mfrac>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $| E(F)| \\gt \\frac{d-1}{d}(| V(G)| -1)$</annotation>\n </semantics></math>, and if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> is not a spanning tree, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> has a component with at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math> edges. Moreover, the bound of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>ν</mi>\n \n <mi>f</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\nu }_{f}(G)$</annotation>\n </semantics></math> is sharp.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"361-367"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23189","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The celebrated Nash-Williams and Tutte's Theorem states that a graph contains edge-disjoint spanning trees if and only if , where
In this paper, we prove that, for integers , , if , then contains edge-disjoint spanning trees and another forest with , and if is not a spanning tree, then has a component with at least edges. Moreover, the bound of is sharp.
著名的 Nash-Williams 和 Tutte 定理指出,当且仅当 ν f ( G ) ≥ k ${{nu }_{f}(G)\ge k$ 时,图 G $G$ 包含 k $k$ 边互不相交的生成树,在本文中,我们证明,对于整数 k ≥ 0 $k\ge 0$ , d ≥ 1 $d\ge 1$ , 如果 ν f ( G ) > k + d - 1 d ${{nu }_{f}(G)\gt k+\frac{d-1}{d}$ ,则 G $G$ 包含 k $k$ 边互不相交的生成树和另一个森林 F $F$ ,其 ∣ E ( F ) ∣ > d - 1 d ( ∣ V ( G ) ∣ - 1 ) $| E(F)| \gt \frac{d-1}{d}(|V(G)|-1)$,如果 F $F$ 不是生成树,那么 F $F$ 有一个至少有 d $d$ 边的部分。
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .