求助PDF
{"title":"论图的缺陷选择性的两个问题","authors":"Jie Ma, Rongxing Xu, Xuding Zhu","doi":"10.1002/jgt.23182","DOIUrl":null,"url":null,"abstract":"<p>Given positive integers <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>≥</mo>\n <mi>k</mi>\n </mrow>\n <annotation> $p\\ge k$</annotation>\n </semantics></math>, and a nonnegative integer <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math>, we say a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(k,d,p)$</annotation>\n </semantics></math>-choosable if for every list assignment <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mi>L</mi>\n <mrow>\n <mo>(</mo>\n <mi>v</mi>\n <mo>)</mo>\n </mrow>\n <mo>∣</mo>\n <mo>≥</mo>\n <mi>k</mi>\n </mrow>\n <annotation> $| L(v)| \\ge k$</annotation>\n </semantics></math> for each <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n <mo>∈</mo>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $v\\in V(G)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <msub>\n <mo>⋃</mo>\n <mrow>\n <mi>v</mi>\n <mo>∈</mo>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n </msub>\n <mi>L</mi>\n <mrow>\n <mo>(</mo>\n <mi>v</mi>\n <mo>)</mo>\n </mrow>\n <mo>∣</mo>\n <mo>≤</mo>\n <mi>p</mi>\n </mrow>\n <annotation> $| {\\bigcup }_{v\\in V(G)}L(v)| \\le p$</annotation>\n </semantics></math>, there exists an <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-coloring of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that each monochromatic subgraph has maximum degree at most <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math>. In particular, <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>k</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(k,0,k)$</annotation>\n </semantics></math>-choosable means <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-colorable, <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mo>+</mo>\n <mi>∞</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(k,0,+\\infty )$</annotation>\n </semantics></math>-choosable means <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-choosable and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mo>+</mo>\n <mi>∞</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(k,d,+\\infty )$</annotation>\n </semantics></math>-choosable means <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math>-defective <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-choosable. This paper proves that there are 1-defective 3-choosable planar graphs that are not 4-choosable, and for any positive integers <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>≥</mo>\n <mi>k</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $\\ell \\ge k\\ge 3$</annotation>\n </semantics></math>, and nonnegative integer <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math>, there are <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>ℓ</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(k,d,\\ell )$</annotation>\n </semantics></math>-choosable graphs that are not <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>ℓ</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(k,d,\\ell +1)$</annotation>\n </semantics></math>-choosable. These results answer questions asked by Wang and Xu, and Kang, respectively. Our construction of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>ℓ</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(k,d,\\ell )$</annotation>\n </semantics></math>-choosable but not <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>ℓ</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(k,d,\\ell +1)$</annotation>\n </semantics></math>-choosable graphs generalizes the construction of Král' and Sgall for the case <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation> $d=0$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"313-324"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On two problems of defective choosability of graphs\",\"authors\":\"Jie Ma, Rongxing Xu, Xuding Zhu\",\"doi\":\"10.1002/jgt.23182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given positive integers <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>≥</mo>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $p\\\\ge k$</annotation>\\n </semantics></math>, and a nonnegative integer <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <annotation> $d$</annotation>\\n </semantics></math>, we say a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation> $(k,d,p)$</annotation>\\n </semantics></math>-choosable if for every list assignment <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n <mi>L</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>v</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∣</mo>\\n <mo>≥</mo>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $| L(v)| \\\\ge k$</annotation>\\n </semantics></math> for each <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n <mo>∈</mo>\\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $v\\\\in V(G)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n <msub>\\n <mo>⋃</mo>\\n <mrow>\\n <mi>v</mi>\\n <mo>∈</mo>\\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </msub>\\n <mi>L</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>v</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∣</mo>\\n <mo>≤</mo>\\n <mi>p</mi>\\n </mrow>\\n <annotation> $| {\\\\bigcup }_{v\\\\in V(G)}L(v)| \\\\le p$</annotation>\\n </semantics></math>, there exists an <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>-coloring of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> such that each monochromatic subgraph has maximum degree at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <annotation> $d$</annotation>\\n </semantics></math>. In particular, <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>k</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation> $(k,0,k)$</annotation>\\n </semantics></math>-choosable means <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-colorable, <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mo>+</mo>\\n <mi>∞</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation> $(k,0,+\\\\infty )$</annotation>\\n </semantics></math>-choosable means <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-choosable and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <mo>,</mo>\\n <mo>+</mo>\\n <mi>∞</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation> $(k,d,+\\\\infty )$</annotation>\\n </semantics></math>-choosable means <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <annotation> $d$</annotation>\\n </semantics></math>-defective <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-choosable. This paper proves that there are 1-defective 3-choosable planar graphs that are not 4-choosable, and for any positive integers <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>≥</mo>\\n <mi>k</mi>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation> $\\\\ell \\\\ge k\\\\ge 3$</annotation>\\n </semantics></math>, and nonnegative integer <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <annotation> $d$</annotation>\\n </semantics></math>, there are <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <mo>,</mo>\\n <mi>ℓ</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation> $(k,d,\\\\ell )$</annotation>\\n </semantics></math>-choosable graphs that are not <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <mo>,</mo>\\n <mi>ℓ</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation> $(k,d,\\\\ell +1)$</annotation>\\n </semantics></math>-choosable. These results answer questions asked by Wang and Xu, and Kang, respectively. Our construction of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <mo>,</mo>\\n <mi>ℓ</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation> $(k,d,\\\\ell )$</annotation>\\n </semantics></math>-choosable but not <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <mo>,</mo>\\n <mi>ℓ</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation> $(k,d,\\\\ell +1)$</annotation>\\n </semantics></math>-choosable graphs generalizes the construction of Král' and Sgall for the case <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation> $d=0$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 2\",\"pages\":\"313-324\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23182\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23182","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用