孤立韧性小于 1 的图形中的分数因子和分量因子

IF 0.9 3区 数学 Q2 MATHEMATICS
Isaak H. Wolf
{"title":"孤立韧性小于 1 的图形中的分数因子和分量因子","authors":"Isaak H. Wolf","doi":"10.1002/jgt.23179","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> be a simple graph and let <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>m</mi>\n </mrow>\n <annotation> $n,m$</annotation>\n </semantics></math> be two integers with <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n \n <mo>&lt;</mo>\n \n <mi>m</mi>\n \n <mo>&lt;</mo>\n \n <mi>n</mi>\n </mrow>\n <annotation> $0\\lt m\\lt n$</annotation>\n </semantics></math>. We prove that <span></span><math>\n <semantics>\n <mrow>\n <mi>i</mi>\n \n <mi>s</mi>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>S</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mi>m</mi>\n </mfrac>\n \n <mo>∣</mo>\n \n <mi>S</mi>\n \n <mo>∣</mo>\n </mrow>\n <annotation> $iso(G-S)\\le \\frac{n}{m}| S| $</annotation>\n </semantics></math> for every <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n \n <mo>⊂</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $S\\subset V(G)$</annotation>\n </semantics></math> if and only if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has a <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>i</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <mi>T</mi>\n \n <mo>:</mo>\n \n <mn>1</mn>\n \n <mo>≤</mo>\n \n <mi>i</mi>\n \n <mo>&lt;</mo>\n \n <mfrac>\n <mi>m</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mi>m</mi>\n </mrow>\n </mfrac>\n \n <mo>,</mo>\n \n <mi>T</mi>\n \n <mo>∈</mo>\n \n <msub>\n <mi>T</mi>\n \n <mfrac>\n <mi>n</mi>\n \n <mi>m</mi>\n </mfrac>\n </msub>\n </mrow>\n </mfenced>\n </mrow>\n <annotation> $\\left\\{{C}_{2i+1},T:1\\le i\\lt \\frac{m}{n-m},T\\in {{\\mathscr{T}}}_{\\frac{n}{m}}\\right\\}$</annotation>\n </semantics></math>-factor, where <span></span><math>\n <semantics>\n <mrow>\n <mi>i</mi>\n \n <mi>s</mi>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>S</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $iso(G-S)$</annotation>\n </semantics></math> denotes the number of isolated vertices of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>S</mi>\n </mrow>\n <annotation> $G-S$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n \n <mfrac>\n <mi>n</mi>\n \n <mi>m</mi>\n </mfrac>\n </msub>\n </mrow>\n <annotation> ${{\\mathscr{T}}}_{\\frac{n}{m}}$</annotation>\n </semantics></math> is a special family of trees. Furthermore, we characterize the trees in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n \n <mfrac>\n <mi>n</mi>\n \n <mi>m</mi>\n </mfrac>\n </msub>\n </mrow>\n <annotation> ${{\\mathscr{T}}}_{\\frac{n}{m}}$</annotation>\n </semantics></math> in terms of their bipartition.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"274-287"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23179","citationCount":"0","resultStr":"{\"title\":\"Fractional factors and component factors in graphs with isolated toughness smaller than 1\",\"authors\":\"Isaak H. Wolf\",\"doi\":\"10.1002/jgt.23179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> be a simple graph and let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>m</mi>\\n </mrow>\\n <annotation> $n,m$</annotation>\\n </semantics></math> be two integers with <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n \\n <mo>&lt;</mo>\\n \\n <mi>m</mi>\\n \\n <mo>&lt;</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n <annotation> $0\\\\lt m\\\\lt n$</annotation>\\n </semantics></math>. We prove that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>i</mi>\\n \\n <mi>s</mi>\\n \\n <mi>o</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>−</mo>\\n \\n <mi>S</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mi>m</mi>\\n </mfrac>\\n \\n <mo>∣</mo>\\n \\n <mi>S</mi>\\n \\n <mo>∣</mo>\\n </mrow>\\n <annotation> $iso(G-S)\\\\le \\\\frac{n}{m}| S| $</annotation>\\n </semantics></math> for every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n \\n <mo>⊂</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $S\\\\subset V(G)$</annotation>\\n </semantics></math> if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> has a <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>i</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>T</mi>\\n \\n <mo>:</mo>\\n \\n <mn>1</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>i</mi>\\n \\n <mo>&lt;</mo>\\n \\n <mfrac>\\n <mi>m</mi>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mi>m</mi>\\n </mrow>\\n </mfrac>\\n \\n <mo>,</mo>\\n \\n <mi>T</mi>\\n \\n <mo>∈</mo>\\n \\n <msub>\\n <mi>T</mi>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mi>m</mi>\\n </mfrac>\\n </msub>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left\\\\{{C}_{2i+1},T:1\\\\le i\\\\lt \\\\frac{m}{n-m},T\\\\in {{\\\\mathscr{T}}}_{\\\\frac{n}{m}}\\\\right\\\\}$</annotation>\\n </semantics></math>-factor, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>i</mi>\\n \\n <mi>s</mi>\\n \\n <mi>o</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>−</mo>\\n \\n <mi>S</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $iso(G-S)$</annotation>\\n </semantics></math> denotes the number of isolated vertices of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n \\n <mo>−</mo>\\n \\n <mi>S</mi>\\n </mrow>\\n <annotation> $G-S$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mi>m</mi>\\n </mfrac>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\mathscr{T}}}_{\\\\frac{n}{m}}$</annotation>\\n </semantics></math> is a special family of trees. Furthermore, we characterize the trees in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mi>m</mi>\\n </mfrac>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\mathscr{T}}}_{\\\\frac{n}{m}}$</annotation>\\n </semantics></math> in terms of their bipartition.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 2\",\"pages\":\"274-287\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23179\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23179\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23179","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 是一个简单图,让 是两个整数,且 。我们证明,对于每一个当且仅当 有-因子时,其中 表示孤立顶点的数量,并且 是一个特殊的树族。此外,我们还用树的二分法来描述树的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fractional factors and component factors in graphs with isolated toughness smaller than 1

Fractional factors and component factors in graphs with isolated toughness smaller than 1

Let G $G$ be a simple graph and let n , m $n,m$ be two integers with 0 < m < n $0\lt m\lt n$ . We prove that i s o ( G S ) n m S $iso(G-S)\le \frac{n}{m}| S| $ for every S V ( G ) $S\subset V(G)$ if and only if G $G$ has a C 2 i + 1 , T : 1 i < m n m , T T n m $\left\{{C}_{2i+1},T:1\le i\lt \frac{m}{n-m},T\in {{\mathscr{T}}}_{\frac{n}{m}}\right\}$ -factor, where i s o ( G S ) $iso(G-S)$ denotes the number of isolated vertices of G S $G-S$ and T n m ${{\mathscr{T}}}_{\frac{n}{m}}$ is a special family of trees. Furthermore, we characterize the trees in T n m ${{\mathscr{T}}}_{\frac{n}{m}}$ in terms of their bipartition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信