Isaak H. Wolf
下载PDF
{"title":"孤立韧性小于 1 的图形中的分数因子和分量因子","authors":"Isaak H. Wolf","doi":"10.1002/jgt.23179","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> be a simple graph and let <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>m</mi>\n </mrow>\n <annotation> $n,m$</annotation>\n </semantics></math> be two integers with <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n \n <mo><</mo>\n \n <mi>m</mi>\n \n <mo><</mo>\n \n <mi>n</mi>\n </mrow>\n <annotation> $0\\lt m\\lt n$</annotation>\n </semantics></math>. We prove that <span></span><math>\n <semantics>\n <mrow>\n <mi>i</mi>\n \n <mi>s</mi>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>S</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mi>m</mi>\n </mfrac>\n \n <mo>∣</mo>\n \n <mi>S</mi>\n \n <mo>∣</mo>\n </mrow>\n <annotation> $iso(G-S)\\le \\frac{n}{m}| S| $</annotation>\n </semantics></math> for every <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n \n <mo>⊂</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $S\\subset V(G)$</annotation>\n </semantics></math> if and only if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has a <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>i</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <mi>T</mi>\n \n <mo>:</mo>\n \n <mn>1</mn>\n \n <mo>≤</mo>\n \n <mi>i</mi>\n \n <mo><</mo>\n \n <mfrac>\n <mi>m</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mi>m</mi>\n </mrow>\n </mfrac>\n \n <mo>,</mo>\n \n <mi>T</mi>\n \n <mo>∈</mo>\n \n <msub>\n <mi>T</mi>\n \n <mfrac>\n <mi>n</mi>\n \n <mi>m</mi>\n </mfrac>\n </msub>\n </mrow>\n </mfenced>\n </mrow>\n <annotation> $\\left\\{{C}_{2i+1},T:1\\le i\\lt \\frac{m}{n-m},T\\in {{\\mathscr{T}}}_{\\frac{n}{m}}\\right\\}$</annotation>\n </semantics></math>-factor, where <span></span><math>\n <semantics>\n <mrow>\n <mi>i</mi>\n \n <mi>s</mi>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>S</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $iso(G-S)$</annotation>\n </semantics></math> denotes the number of isolated vertices of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>S</mi>\n </mrow>\n <annotation> $G-S$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n \n <mfrac>\n <mi>n</mi>\n \n <mi>m</mi>\n </mfrac>\n </msub>\n </mrow>\n <annotation> ${{\\mathscr{T}}}_{\\frac{n}{m}}$</annotation>\n </semantics></math> is a special family of trees. Furthermore, we characterize the trees in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n \n <mfrac>\n <mi>n</mi>\n \n <mi>m</mi>\n </mfrac>\n </msub>\n </mrow>\n <annotation> ${{\\mathscr{T}}}_{\\frac{n}{m}}$</annotation>\n </semantics></math> in terms of their bipartition.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"274-287"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23179","citationCount":"0","resultStr":"{\"title\":\"Fractional factors and component factors in graphs with isolated toughness smaller than 1\",\"authors\":\"Isaak H. Wolf\",\"doi\":\"10.1002/jgt.23179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> be a simple graph and let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>m</mi>\\n </mrow>\\n <annotation> $n,m$</annotation>\\n </semantics></math> be two integers with <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n \\n <mo><</mo>\\n \\n <mi>m</mi>\\n \\n <mo><</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n <annotation> $0\\\\lt m\\\\lt n$</annotation>\\n </semantics></math>. We prove that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>i</mi>\\n \\n <mi>s</mi>\\n \\n <mi>o</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>−</mo>\\n \\n <mi>S</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mi>m</mi>\\n </mfrac>\\n \\n <mo>∣</mo>\\n \\n <mi>S</mi>\\n \\n <mo>∣</mo>\\n </mrow>\\n <annotation> $iso(G-S)\\\\le \\\\frac{n}{m}| S| $</annotation>\\n </semantics></math> for every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n \\n <mo>⊂</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $S\\\\subset V(G)$</annotation>\\n </semantics></math> if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> has a <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>i</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>T</mi>\\n \\n <mo>:</mo>\\n \\n <mn>1</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>i</mi>\\n \\n <mo><</mo>\\n \\n <mfrac>\\n <mi>m</mi>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mi>m</mi>\\n </mrow>\\n </mfrac>\\n \\n <mo>,</mo>\\n \\n <mi>T</mi>\\n \\n <mo>∈</mo>\\n \\n <msub>\\n <mi>T</mi>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mi>m</mi>\\n </mfrac>\\n </msub>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left\\\\{{C}_{2i+1},T:1\\\\le i\\\\lt \\\\frac{m}{n-m},T\\\\in {{\\\\mathscr{T}}}_{\\\\frac{n}{m}}\\\\right\\\\}$</annotation>\\n </semantics></math>-factor, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>i</mi>\\n \\n <mi>s</mi>\\n \\n <mi>o</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>−</mo>\\n \\n <mi>S</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $iso(G-S)$</annotation>\\n </semantics></math> denotes the number of isolated vertices of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n \\n <mo>−</mo>\\n \\n <mi>S</mi>\\n </mrow>\\n <annotation> $G-S$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mi>m</mi>\\n </mfrac>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\mathscr{T}}}_{\\\\frac{n}{m}}$</annotation>\\n </semantics></math> is a special family of trees. Furthermore, we characterize the trees in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mi>m</mi>\\n </mfrac>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\mathscr{T}}}_{\\\\frac{n}{m}}$</annotation>\\n </semantics></math> in terms of their bipartition.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 2\",\"pages\":\"274-287\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23179\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23179\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23179","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用