Compatible powers of Hamilton cycles in dense graphs

IF 0.9 3区 数学 Q2 MATHEMATICS
Xiaohan Cheng, Jie Hu, Donglei Yang
{"title":"Compatible powers of Hamilton cycles in dense graphs","authors":"Xiaohan Cheng,&nbsp;Jie Hu,&nbsp;Donglei Yang","doi":"10.1002/jgt.23178","DOIUrl":null,"url":null,"abstract":"<p>The notion of incompatibility system was first proposed by Krivelevich, Lee and Sudakov to formulate the robustness of Hamiltonicity of Dirac graphs. Given a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n \n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>E</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $G=(V,E)$</annotation>\n </semantics></math>, an <i>incompatibility system</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math> over <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a family <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n \n <mo>=</mo>\n \n <msub>\n <mrow>\n <mo>{</mo>\n \n <msub>\n <mi>F</mi>\n \n <mi>v</mi>\n </msub>\n \n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>v</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}={\\{{F}_{v}\\}}_{v\\in V}$</annotation>\n </semantics></math> such that for every <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n </mrow>\n <annotation> $v\\in V$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>v</mi>\n </msub>\n </mrow>\n <annotation> ${F}_{v}$</annotation>\n </semantics></math> is a family of edge pairs <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>e</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>e</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∈</mo>\n \n <mfenced>\n <mfrac>\n <mrow>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mfenced>\n </mrow>\n <annotation> $\\{e,{e}^{^{\\prime} }\\}\\in \\left(\\genfrac{}{}{0ex}{}{E(G)}{2}\\right)$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n \n <mo>∩</mo>\n \n <msup>\n <mi>e</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>=</mo>\n <mrow>\n <mo>{</mo>\n \n <mi>v</mi>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $e\\cap {e}^{^{\\prime} }=\\{v\\}$</annotation>\n </semantics></math>. Moreover, for an integer <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow>\n <annotation> $k\\in {\\mathbb{N}}$</annotation>\n </semantics></math>, we say <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-<i>bounded</i> if for every vertex <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math> and its incident edge <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math>, there are at most <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> pairs in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>v</mi>\n </msub>\n </mrow>\n <annotation> ${F}_{v}$</annotation>\n </semantics></math> containing <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math>. Krivelevich, Lee and Sudakov proved that there is an universal constant <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n \n <mo>&gt;</mo>\n \n <mn>0</mn>\n </mrow>\n <annotation> $\\mu \\gt 0$</annotation>\n </semantics></math> such that for every Dirac graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and every <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n \n <mi>n</mi>\n </mrow>\n <annotation> $\\mu n$</annotation>\n </semantics></math>-bounded incompatibility system <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math> over <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, there exists a Hamilton cycle <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n \n <mo>⊆</mo>\n \n <mi>G</mi>\n </mrow>\n <annotation> $C\\subseteq G$</annotation>\n </semantics></math> where every pair of adjacent edges <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>e</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n <annotation> $e,{e}^{^{\\prime} }$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math> satisfies <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>e</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>e</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∉</mo>\n \n <msub>\n <mi>F</mi>\n \n <mi>v</mi>\n </msub>\n </mrow>\n <annotation> $\\{e,{e}^{^{\\prime} }\\}\\notin {F}_{v}$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mi>v</mi>\n \n <mo>}</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>e</mi>\n \n <mo>∩</mo>\n \n <msup>\n <mi>e</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n <annotation> $\\{v\\}=e\\cap {e}^{^{\\prime} }$</annotation>\n </semantics></math>. This resolves a conjecture posed by Häggkvist in 1988 and such a Hamilton cycle is called <i>compatible</i> (with respect to <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math>). We study high powers of Hamilton cycles in this context and show that for every <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n \n <mo>&gt;</mo>\n \n <mn>0</mn>\n </mrow>\n <annotation> $\\gamma \\gt 0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow>\n <annotation> $k\\in {\\mathbb{N}}$</annotation>\n </semantics></math>, there exists a constant <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n \n <mo>&gt;</mo>\n \n <mn>0</mn>\n </mrow>\n <annotation> $\\mu \\gt 0$</annotation>\n </semantics></math> such that for sufficiently large <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow>\n <annotation> $n\\in {\\mathbb{N}}$</annotation>\n </semantics></math> and every <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n \n <mi>n</mi>\n </mrow>\n <annotation> $\\mu n$</annotation>\n </semantics></math>-bounded incompatibility system over an <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mfenced>\n <mrow>\n <mfrac>\n <mi>k</mi>\n <mrow>\n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <mo>+</mo>\n \n <mi>γ</mi>\n </mrow>\n </mfenced>\n \n <mi>n</mi>\n </mrow>\n <annotation> $\\delta (G)\\ge \\left(\\frac{k}{k+1}+\\gamma \\right)n$</annotation>\n </semantics></math>, there exists a compatible <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>th power of a Hamilton cycle in <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Moreover, we give a <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n \n <mi>n</mi>\n </mrow>\n <annotation> $\\mu n$</annotation>\n </semantics></math>-bounded construction which has minimum degree <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mi>k</mi>\n <mrow>\n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mi>Ω</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\frac{k}{k+1}n+{\\rm{\\Omega }}(n)$</annotation>\n </semantics></math> and contains no compatible <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>th power of a Hamilton cycle.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"257-273"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23178","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The notion of incompatibility system was first proposed by Krivelevich, Lee and Sudakov to formulate the robustness of Hamiltonicity of Dirac graphs. Given a graph G = ( V , E ) $G=(V,E)$ , an incompatibility system F ${\rm{ {\mathcal F} }}$ over G $G$ is a family F = { F v } v V ${\rm{ {\mathcal F} }}={\{{F}_{v}\}}_{v\in V}$ such that for every v V $v\in V$ , F v ${F}_{v}$ is a family of edge pairs { e , e } E ( G ) 2 $\{e,{e}^{^{\prime} }\}\in \left(\genfrac{}{}{0ex}{}{E(G)}{2}\right)$ with e e = { v } $e\cap {e}^{^{\prime} }=\{v\}$ . Moreover, for an integer k N $k\in {\mathbb{N}}$ , we say F ${\rm{ {\mathcal F} }}$ is k $k$ -bounded if for every vertex v $v$ and its incident edge e $e$ , there are at most k $k$ pairs in F v ${F}_{v}$ containing e $e$ . Krivelevich, Lee and Sudakov proved that there is an universal constant μ > 0 $\mu \gt 0$ such that for every Dirac graph G $G$ and every μ n $\mu n$ -bounded incompatibility system F ${\rm{ {\mathcal F} }}$ over G $G$ , there exists a Hamilton cycle C G $C\subseteq G$ where every pair of adjacent edges e , e $e,{e}^{^{\prime} }$ of C $C$ satisfies { e , e } F v $\{e,{e}^{^{\prime} }\}\notin {F}_{v}$ for { v } = e e $\{v\}=e\cap {e}^{^{\prime} }$ . This resolves a conjecture posed by Häggkvist in 1988 and such a Hamilton cycle is called compatible (with respect to F ${\rm{ {\mathcal F} }}$ ). We study high powers of Hamilton cycles in this context and show that for every γ > 0 $\gamma \gt 0$ and k N $k\in {\mathbb{N}}$ , there exists a constant μ > 0 $\mu \gt 0$ such that for sufficiently large n N $n\in {\mathbb{N}}$ and every μ n $\mu n$ -bounded incompatibility system over an n $n$ -vertex graph G $G$ with δ ( G ) k k + 1 + γ n $\delta (G)\ge \left(\frac{k}{k+1}+\gamma \right)n$ , there exists a compatible k $k$ th power of a Hamilton cycle in G $G$ . Moreover, we give a μ n $\mu n$ -bounded construction which has minimum degree k k + 1 n + Ω ( n ) $\frac{k}{k+1}n+{\rm{\Omega }}(n)$ and contains no compatible k $k$ th power of a Hamilton cycle.

密集图中汉密尔顿循环的相容幂
不相容系统的概念最早是由 Krivelevich、Lee 和 Sudakov 提出的,用于阐述狄拉克图的哈密顿性的稳健性。给定一个图 ,其上的不相容系统是这样一个族,即对于每一个 ,是一个具有 。此外,对于整数 ,如果对于每个顶点和它的附带边,最多有对在包含 。Krivelevich、Lee 和 Sudakov 证明了存在一个通用常数,对于每一个狄拉克图和每一个有界不相容系统,都存在一个汉密尔顿循环,其中每一对相邻边都满足 。这解决了海格奎斯特在 1988 年提出的一个猜想,这样的汉密尔顿循环被称为相容循环(关于 )。在此背景下,我们研究了汉密尔顿循环的高次幂,并证明对于每一个 和 ,都存在一个常数,使得对于足够大和每一个有界不相容系统的有顶点图,都存在一个相容的汉密尔顿循环的th次幂。此外,我们还给出了一种有界构造,它具有最小的度,并且不包含汉密尔顿循环的兼容幂次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信