{"title":"Compatible powers of Hamilton cycles in dense graphs","authors":"Xiaohan Cheng, Jie Hu, Donglei Yang","doi":"10.1002/jgt.23178","DOIUrl":null,"url":null,"abstract":"<p>The notion of incompatibility system was first proposed by Krivelevich, Lee and Sudakov to formulate the robustness of Hamiltonicity of Dirac graphs. Given a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n \n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>E</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $G=(V,E)$</annotation>\n </semantics></math>, an <i>incompatibility system</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math> over <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a family <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n \n <mo>=</mo>\n \n <msub>\n <mrow>\n <mo>{</mo>\n \n <msub>\n <mi>F</mi>\n \n <mi>v</mi>\n </msub>\n \n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>v</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}={\\{{F}_{v}\\}}_{v\\in V}$</annotation>\n </semantics></math> such that for every <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n </mrow>\n <annotation> $v\\in V$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>v</mi>\n </msub>\n </mrow>\n <annotation> ${F}_{v}$</annotation>\n </semantics></math> is a family of edge pairs <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>e</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>e</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∈</mo>\n \n <mfenced>\n <mfrac>\n <mrow>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mfenced>\n </mrow>\n <annotation> $\\{e,{e}^{^{\\prime} }\\}\\in \\left(\\genfrac{}{}{0ex}{}{E(G)}{2}\\right)$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n \n <mo>∩</mo>\n \n <msup>\n <mi>e</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>=</mo>\n <mrow>\n <mo>{</mo>\n \n <mi>v</mi>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $e\\cap {e}^{^{\\prime} }=\\{v\\}$</annotation>\n </semantics></math>. Moreover, for an integer <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow>\n <annotation> $k\\in {\\mathbb{N}}$</annotation>\n </semantics></math>, we say <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-<i>bounded</i> if for every vertex <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math> and its incident edge <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math>, there are at most <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> pairs in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>v</mi>\n </msub>\n </mrow>\n <annotation> ${F}_{v}$</annotation>\n </semantics></math> containing <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math>. Krivelevich, Lee and Sudakov proved that there is an universal constant <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n \n <mo>></mo>\n \n <mn>0</mn>\n </mrow>\n <annotation> $\\mu \\gt 0$</annotation>\n </semantics></math> such that for every Dirac graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and every <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n \n <mi>n</mi>\n </mrow>\n <annotation> $\\mu n$</annotation>\n </semantics></math>-bounded incompatibility system <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math> over <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, there exists a Hamilton cycle <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n \n <mo>⊆</mo>\n \n <mi>G</mi>\n </mrow>\n <annotation> $C\\subseteq G$</annotation>\n </semantics></math> where every pair of adjacent edges <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>e</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n <annotation> $e,{e}^{^{\\prime} }$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math> satisfies <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>e</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>e</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∉</mo>\n \n <msub>\n <mi>F</mi>\n \n <mi>v</mi>\n </msub>\n </mrow>\n <annotation> $\\{e,{e}^{^{\\prime} }\\}\\notin {F}_{v}$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mi>v</mi>\n \n <mo>}</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>e</mi>\n \n <mo>∩</mo>\n \n <msup>\n <mi>e</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n <annotation> $\\{v\\}=e\\cap {e}^{^{\\prime} }$</annotation>\n </semantics></math>. This resolves a conjecture posed by Häggkvist in 1988 and such a Hamilton cycle is called <i>compatible</i> (with respect to <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math>). We study high powers of Hamilton cycles in this context and show that for every <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n \n <mo>></mo>\n \n <mn>0</mn>\n </mrow>\n <annotation> $\\gamma \\gt 0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow>\n <annotation> $k\\in {\\mathbb{N}}$</annotation>\n </semantics></math>, there exists a constant <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n \n <mo>></mo>\n \n <mn>0</mn>\n </mrow>\n <annotation> $\\mu \\gt 0$</annotation>\n </semantics></math> such that for sufficiently large <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow>\n <annotation> $n\\in {\\mathbb{N}}$</annotation>\n </semantics></math> and every <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n \n <mi>n</mi>\n </mrow>\n <annotation> $\\mu n$</annotation>\n </semantics></math>-bounded incompatibility system over an <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mfenced>\n <mrow>\n <mfrac>\n <mi>k</mi>\n <mrow>\n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <mo>+</mo>\n \n <mi>γ</mi>\n </mrow>\n </mfenced>\n \n <mi>n</mi>\n </mrow>\n <annotation> $\\delta (G)\\ge \\left(\\frac{k}{k+1}+\\gamma \\right)n$</annotation>\n </semantics></math>, there exists a compatible <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>th power of a Hamilton cycle in <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Moreover, we give a <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n \n <mi>n</mi>\n </mrow>\n <annotation> $\\mu n$</annotation>\n </semantics></math>-bounded construction which has minimum degree <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mi>k</mi>\n <mrow>\n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mi>Ω</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\frac{k}{k+1}n+{\\rm{\\Omega }}(n)$</annotation>\n </semantics></math> and contains no compatible <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>th power of a Hamilton cycle.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"257-273"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23178","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The notion of incompatibility system was first proposed by Krivelevich, Lee and Sudakov to formulate the robustness of Hamiltonicity of Dirac graphs. Given a graph , an incompatibility system over is a family such that for every , is a family of edge pairs with . Moreover, for an integer , we say is -bounded if for every vertex and its incident edge , there are at most pairs in containing . Krivelevich, Lee and Sudakov proved that there is an universal constant such that for every Dirac graph and every -bounded incompatibility system over , there exists a Hamilton cycle where every pair of adjacent edges of satisfies for . This resolves a conjecture posed by Häggkvist in 1988 and such a Hamilton cycle is called compatible (with respect to ). We study high powers of Hamilton cycles in this context and show that for every and , there exists a constant such that for sufficiently large and every -bounded incompatibility system over an -vertex graph with , there exists a compatible th power of a Hamilton cycle in . Moreover, we give a -bounded construction which has minimum degree and contains no compatible th power of a Hamilton cycle.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .